
Function reference
Ability provides a range of over 200 built-in functions that you can use in formulas. 

A built-in function is a fast way to perform often-used calculations (such as totaling a group of numbers)
or complicated calculations (like figuring the net present value or the internal rate of return).

The functions in Ability are divided into the following main categories:

Date functions  Financial functions 

Trigonometric functions Mathematical functions 

Statistical functions Remote functions 

Text functions Document functions 

Lookup functions Logical functions 

Information functions  

See also:

Using built-in functions 

Using the function dialog box to build formulas 

Text arguments 

Arrays 

Arithmetical operators 

Logical operators 

Relational operators 

Priority of evaluation of operators

Cell error indicators 



Using built-in functions

Built-in functions are actually formulas, and must be preceded by an equals sign (=) on the formula bar.
You can use the built-in functions to perform date, financial, logical, mathematical, trigonometric, 
statistical, and other calculations.

You include a built-in function in a formula according to specific rules:

First activate the cell in which you wish the formula result to go, and then type the formula as usual. 
You can use a built-in function as the entire formula, or as part of one. You must precede the function 
name with = to show Ability that it is a formula.

You must type the function name exactly; you can’t abbreviate the name. The only exceptions are that 
you can enter AVG for the AVERAGE function, and STD for the STDEV function.

The function name is always followed by an open parenthesis, then the required arguments, and then a
close parenthesis. Arguments are the values Ability needs to perform the calculation.

For example, the TOTAL function requires as its argument a list of the values you want to add. The list 
can be numbers, cell addresses, cell ranges, or cell names. Here’s what you might type to find the total
of some values in column C of a spreadsheet:

=TOTAL(C1..C15)
If a function doesn’t require an argument, you must still enter the parentheses. For example:

=TODAY().
You can use more than one function in a single formula. Use parentheses to group the various 
functions and control the order of calculation. For example, you can calculate the average of a row of 
numbers and display the absolute value of the result by using the formula:

=ABS(AVG(A1..A8))
If Ability is unable to perform the calculation you request, you’ll see an error indicator displayed in the 
cell instead of the result of the formula. You can find a list of the error indicators and an explanation of 
each later in this section.



Using the function dialog box to build formulas

The quick way to add built-in functions to your formulas is by using the "Insert Function" dialog box. 
This saves you from having to remember all the different function names and the parameters each 
function requires.

Suppose you want to display the month number of the current date. Follow these steps:

1. Double-click in an empty field to activate the Formula Editor

2. Click on the Insert Function button, or select the Function command from the Insert menu

3. Click on the Date category and then select the Month function. Click on the OK button

4. The cursor will now lie between the brackets inserted with the Month function. Click the Insert 
Function button again and select the Date category and then select the Today function. The formula
should now read MONTH(TODAY()).

5. Click the Confirm button on the formula bar (or press Enter) to finish the formula.

You can call on the "Insert Function" dialog box any time you are editing a formula.

Select the Paste Arguments checkbox before clicking OK to make Ability insert the formula with text 
entries for each of the function parameters. You can then replace them with the appropriate cell or 
range references.



Text arguments

Some formulas require text as arguments. In such cases, the text can be supplied either directly into 
the function by surrounding the text by double quotes, or by cell reference, in which case quotes are 
not required.

Some examples of functions that require text as arguments are:

WPGET(document, fieldname), LEFT(text, num_chars) and UPPER(text)
where the text arguments are highlighted in bold.

For example, suppose you wanted to put the sentence "Have a nice day" into uppercase, use one of 
the following methods:

UPPER("Have a nice day")
UPPER(A1) 

where A1 contains the text: Have a nice day without any quotes.

Text arguments containing quotes
Suppose the text argument itself contains one or more quotes. For example, "Have a "nice" day". The 
quotes within the text need to be treated as a special cases so that Ability knows where an argument 
begins and ends. This is done by "escaping" the character using the caret (^) as follows:

UPPER("Have a ^"nice^" day")
Note the quotes surrounding the word nice are each preceded by the caret. The same thing can be 
achieved using a cell reference without the need for escaping characters:

UPPER(A1)
where A1 contains the text Have a "nice" day will still work as expected.

If your text contains a caret, you need to escape the caret itself so:

UPPER("The caret is denoted by the ^^ symbol")
returns the text: THE CARET IS DENOTED BY THE ^ SYMBOL.



Arrays

Some formulas require one or more arrays. An array is the same as list except arrays may be two-
dimensional. 

When entering numeric constants directly, rather than by cell reference, into a formula that requires an 
array as an argument, the array must be bounded by a pair of "braces" {}. For example, The 
INTERCEPT function requires two arrays as arguments. These are usually entered as cell ranges:

INTERCEPT(A1..A10, B1..B10) 
but can be entered using numbers directly:

INTERCEPT({1, 2, 3, 4}, {1.1, 2.4, 2.9, 4.1})
Note that the arrays themselves are separated by a comma.

Other formulas, for example MDETERM , where the function performs a calculation on a matrix with an 
equal number of rows and columns, take as argument a single array. Note that each row in the array is 
separated by a semi-colon:

MDETERM({2, 5, -3; -1, 10, 1; 2, -3, 1}). 
You cannot, however, use a range reference as if it were composed of separate ranges or individual 
cell references. So, for example, the formulas MDETERM({A1..C1; A2..C2; A3..C3}) and 
MDETERM({A1, B1, C1; A2, B2, C2; A3, B3, C3}) are invalid and return an error message.



Logical operators

There are three logical operators you can use when building logical expressions. These are especially 
useful when using the IF function.

The following table lists the logical operators in their natural order of evaluation. If you combine either 
AND or OR with relational operators in an expression, Ability evaluates the relational operators before 
evaluating the AND or OR.

Operator Meaning
& AND 
| OR 
~ NOT 

For example:

Formula Returns
2 * 3 > 7 FALSE

(2 * 3 > 7) | (4 * 1 = 4) TRUE

(2 * 3 = 6) & ~(4 - (4 * 1)) TRUE

IF (cond1 & cond2 & cond3, 
truevalue, falsevalue)

if all conditions are met, 
truevalue

Using the logical operators is equivalent to using the logical functions as follows:

Formula Function Equivalent
(2 * 3 > 7) | (4 * 1 = 4) OR((2 * 3 > 7), (4 * 1 = 4))

(2 * 3 = 6) & ~(4 - 4 * 1) AND((2 * 3 = 6), NOT(4 - 4 * 1))

IF (cond1 & cond2 & cond3, 
truevalue, falsevalue)

IF(AND(cond1, cond2, cond3), 
truevalue, falsevalue)

See also:

Logical functions 

Arithmetical operators 

Relational operators 

Priority of evaluation of operators 

Function reference 



Relational operators

You can use the following relational operators when building logical expressions.
Operator Meaning
< Less than
> Greater than
= Equal to
<= Less than or equal to
>= Greater than or equal to
<> or ~= Not equal to.

These are especially useful in combination with the IF(x, true, false) function.

If you combine relational operators with arithmetical operators in an expression, Ability performs the 
arithmetical operations before evaluating the relational operators.

See also:

Logical operators 

Arithmetical operators 

Priority of evaluation of operators 

Function reference



Arithmetical operators

The following standard arithmetical operators are available in Ability. If arithmetical operators are used 
in conjunction with relational operators in an expression, then the arithmetical operations are calculated
before the relational operators are evaluated.

Operator Meaning
+ add
- subtract
* multiply
/ divide
^ power e.g. 2 ^ 3 = 2 * 2 * 2
% percentage e.g. 15% = 0.15
(..) bracketed expressions e.g. (2 * 8 - 17)

Note that the arithmetical operators are evaluated in the following order in an expression:

(..)
%
^
* and /
+ and -

For example, the expression:

1 + 2 * 3 / 4 ^ 5 % - 6 
is calculated as if it were the bracketed expression:

1 + ((2 * 3) / (4 ^ (5%))) - 6
Ability will automatically strip excess brackets from a formula to display it in its simplest form.

See also:

Logical operators 

Relational operators 

Priority of evaluation of operators 

Function reference



Priority of evaluation of operators

The functions and operators in Ability are evaluated in an order of priority. For complex expressions you
will not have to worry about this too much, since it is likely that you will have used brackets to control 
and make clear the way you want the expressions to be calculated. The priorities are as follows, 
starting with the highest:

Operator / Function Meaning
Built-in functions Ability’s built-in functions
(..) bracketed expressions
% percentage
^ power
* and / multiply and divide
+ and - add and subtract
<, <=, >, >=, =, <> relational operators
~ NOT
& AND
| OR

See also:

Logical operators 

Relational operators 

Arithmetical operators 

Function reference



Cell error indicators

If Ability cannot perform the calculation you request in a formula, it displays an error indicator in the cell 
instead of the result of the calculation.

There are five different error messages:
Error Explanation
#VALUE Formula cannot be evaluated. For example, the

type of an argument does not match, as in 
SQRT(-16), or an argument is out of range, as 
in RIGHT("New York", -5).

#FUNC Wrong number of function arguments or 
improper function argument . For example, 
SIN(A1, A2, A3) or COS(A1..B10).

#DIV0 The formula attempts to divide by zero.
#REF Bad reference argument in formula. For 

example, SUM(Sales), when there is no range 
called Sales.

#CIRC The formula makes a circular link. For 
example, when the formula =A1 + 5 is entered 
in A1.

Function reference 



Date functions 
Ability allows you to perform arithmetic with dates and times. To do this, it has a built-in numbering 
sequence, called a date/time code, that starts 1st Jan 1900 and increases by one for each subsequent 
day. 

The date time code has a fractional component as well, to correspond to the hour, minute and second 
since midnight. A date/time code of 1.5 represents one-and-a-half days since the start of the year 1900,
that is 12:00 noon on the 2nd Jan 1900.

For example:
Date/time code 35484.47917 24th Feb 1997 11:30:00 AM
Date code 35484 24th Feb 1997 i.e. 35484 days since 

1/1/1900 
Time code 0.47917 11:30 AM i.e. 0.47917 * 24 hours since 

midnight

A date code, then, is the integer part of a date/time code and a time code is the fractional remainder.

You can use Ability’s built-in date functions to generate a date/time code or to translate a date code into
the weekday, day, month, or year and a time code into hours, minutes and seconds.

To change how a date/time code is displayed, use the Number command from the Format menu and 
select a date format.

See the note on Year 2000 for details on how Ability deals with dates in the 21st Century.

Here is a complete list of date functions in Ability:

DATE DATEVALUE

DAY DAYS360

EDATE EOMONTH

HOUR MINUTE

MONTH NETWORKDAYS

NOW SECOND

TIME TIMEVALUE

TODAY WEEKDAY

WEEKNUM WORKDAY

YEAR YEARFRAC

See also:

Other functions 



Year 2000
The short answer is that the change of millenium won't cause any problems for Ability.

There are however two issues which you should be aware of:

1. Date format - in a spreadsheet showing both 20th and 21st Century dates, you should format all 
dates to display four digit years to avoid confusion. See date formatting for more details.

2. Date entry - you can enter dates using either two digit years or four digit years. Obviously, with four 
digit years, there's no ambiguity in Century. Most people will be used to entering two digit years, in 
which case, Ability will assume you mean the 20th Century for all years later and including 1930 
and 21st Century for all years below 1930. For example:

Enter date as… Ability understands you to mean…
1/1/98 1/1/1998
1/1/10 1/1/2010
1/1/29 1/1/2029
1/1/30 1/1/1930



DATE(year, month, day)

The DATE function calculates a date code for the given year, month and day. For example, the 
formula:

DATE(97, 8, 8) 
produces the date code 35649 or 8th August 1997 depending on your number format.

Other date functions 



DATEVALUE(date_text)

The DATEVALUE function converts a date in the form of text to a date code. For example, the formula:

DATEVALUE("8-Aug-1997") 
returns the date code 35649, as does:

DATEVALUE("8/8/97")
If the year is left out, the date code will refer to the current year.    

Other date functions



DAY(date-code)

The DAY function calculates the day of the month of the date-code you enter. For example, the formula:

DAY(35649) 
produces 8 as the day of the month, since the date code refers to 8th August 1997.

Other date functions



DAYS360(start_date, end_date, method)

The DAYS360 function calculates the number of days between a start_date and an end_date, based 
on a 12-month year of 30 days each. This is useful when accounts are calculated on the assumption of 
a 30-day month. The dates can be entered in either text or date code format. 

method is either European (TRUE or omitted) or American (FALSE). If TRUE or omitted then start-
dates or end-dates that refer to the 31st day of a month become 30; if FALSE then a start-date of 31 
becomes 30, but an end-date of 31 becomes the 1st of the next month when the start-date is less than 
30, otherwise the end-date becomes 30. 

For example, the formula:

DAYS360("25/1/97", "31/7/97", TRUE)
returns 185, whereas:

DAYS360("25/1/97", "31/7/97", FALSE)
returns 186.

Other date functions



EDATE(start_date, months)

The EDATE function calculates the date that is start_date plus or minus the number of months 
indicated. For example, the formula:

EDATE("12 December, 1997", -3)
returns the date "12 September, 1997".

Other date functions



EOMONTH(start_date, months)

The EOMONTH function calculates the end of the month that is start_date plus or minus the number of
months indicated. For example, the formula:

EOMONTH("4/4/96", 5)
returns the date "30 September, 1996".

Other date functions



HOUR(time_code)

The HOUR function converts a time_code to an hour. The hour is calculated using the 24-hour clock 
as a basis, running from 0 at 12 PM (or 0:00 hours) to 23 at 11 PM (or 23:00 hours). 24-hour cycles 
correspond to a time code increment of 1. The argument for HOUR can be in either text or time code 
format.

Examples:
Formula Returns
HOUR(0.3) 7
HOUR(1.5) 12
HOUR(455.5) 21
HOUR("9:30 PM") 21
HOUR("21:30:45") 21.

Other date functions



MINUTE(time_code)

The MINUTE function converts a time_code to a minute. The minute is calculated using 1 hour as a 
basis, running from 0 to 59. A time code increment of 1 corresponds to 1 day (or 1,440 minutes). The 
argument for MINUTE can be in either text or time code format.

The following examples all returns 12, that is the 12th minute after the 13th hour of the day.
Formula Returns
MINUTE(0.55) 12
MINUTE(1.55) 12
MINUTE("13:12") 12

Other date functions



MONTH(date-code)

The MONTH function calculates the month from the date_code you enter.

For example:

MONTH(31062) 
returns the month 1 since the date referred to by the date code is 16th January 1985.

Other date functions



NETWORKDAYS(start_date, end_date, list_holidays)

The NETWORKDAYS function calculates the number of whole work days between 2 dates, start_date 
and end_date, taking into account weekends and holidays.

For example, the formula:

 NETWORKDAYS ("1 Jan 1997", "31 Dec 1997")
returns 261, that is a years worth of workdays, taking into account weekends. 

 NETWORKDAYS ("1 Jan 97", "31 Jan 97", "14 Jan 97", "15 Jan 97")
returns 21, that is the number of workdays in January with two days holiday.

Other date functions



NOW( )

The NOW function calculates the current date and time from the date-time code as set by your 
computer’s built-in clock. 

For example:

NOW()
would return "July/2/1997 12:23 PM" if that was in fact the current time and date.

If you choose to display the date-time code as a number, then the numbers before the decimal point 
represent the date, and the numbers after the decimal point represent the time.

The time and date are taken directly from your computer’s operating system (e.g. Windows 95) - if they
appear incorrect, you need to adjust the clock on your PC.

Other date functions



SECOND(time_code)

The SECOND function calculates the number of seconds from 0 to 59 from a time_code. The function 
can take as argument either a time code or text.

For example, the formula 

SECOND("22:14:10")
returns 10, the number of seconds into the 14th minute of the 22nd hour.

SECOND(0.01)
returns 14, as 100th of a day is 14 minutes 24 seconds exactly.

Other date functions



TIME(hour, minute, second)

The TIME function calculates the time code from a supplied hour, minute and second. This enables 
you to display the time in a format of your choice. The arguments for TIME are entered according to the
24 hour clock.

For example, the formula:

TIME(22,20,40)
returns a time code of 0.93101852 and is equivalent 10:20:40 PM, which is the displayed default 
format.

Note that the formulas TIME(0, 0, 0) and TIME(24, 0, 0) return time codes of 0 and 1 respectively.

Other date functions



TIMEVALUE(time_text)

The TIMEVALUE function calculates the time code based on a time represented as text. The time code 
is a decimal fraction ranging from 0 to 0.99999 (0:00:00 to 23:59:59).

For example, the formula:

TIMEVALUE("20:15:30")
returns the time code 0.84409722 when formatted as a plain number.

Other date functions



TODAY( )

The TODAY function returns today's date. It actually calculates a date code for the current day and, by 
default this will be formatted and displayed as a date. For example:

TODAY()
returns "July/2/1997" on that date. 

The date is taken directly from the operating system (e.g. Windows 95) - if it appears incorrect, you 
need to adjust the clock on your PC. 

Other date functions



WEEKDAY(date_code)

The WEEKDAY function calculates the day of the week for the supplied date_code. Days of the week 
are numbered sequentially from Sunday (1) through to Saturday (7).

For example, the formula:

WEEKDAY(35612) 
returns 4 as the 2nd July 1997 is a Wednesday. The WEEKDAY function can be useful in conjunction 
with the TODAY function, for example:

WEEKDAY(TODAY())
returns the current day of the week.

Other date functions



WEEKNUM(date_code, return_type)

The WEEKNUM function uses date_code to calculate the week number in the year. return_type is a 
number that tells the function on what day of the week the week begins: 1 for Sunday; 2 for Monday. If 
this is omitted WEEKNUM uses 1.

For example, if you want to know the week number for 1st November, 1997, assuming the week begins
on Monday, use the formula:

WEEKNUM("1 Nov 97", 2)
to get 44 (the 44th week of the year).

Other date functions



WORKDAY(start_date, days, list_holidays)

The WORKDAY function returns a date that is start_date plus or minus days - a specified number of 
workdays, taking into account weekends and holidays given by list_holidays.

For example, the formula:

WORKDAY("February/1/97", 100, "March/28/97") 
returns the date "June/23/1997", a date 100 workdays after 1 Feb 97 given a holiday on 28 March.

Other date functions



YEAR(date-code)

The YEAR function returns the year of the date code you enter.

For example, the formula:

YEAR(31062)
returns the year 1985. At the time this text was written, the following example returns 1997:

YEAR(TODAY())
See also:

TODAY( ) 

Other date functions



YEARFRAC(start_date, end_date, basis)

The YEARFRAC function calculates the year fraction representing the number of whole days between 
start_date and end_date. basis is the type of day count basis to be used, as defined by the following 
table:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, if a period has start date, 5 August 1997, and end date, 1 November 1997, with a day 
count basis of 30/360, the formula:

YEARFRAC(35646, 35734, 4) 
returns a year fraction for the period of 0.2389 or 23.89%.

Other date functions



Financial functions
You can use the built-in financial functions to calculate compound amounts and net present values of 
investments, and to perform other forecasting and analytical calculations.

Here is a complete list of financial functions in Ability:

ACCRINTM COMPOUND

COUPDAYBS COUPDAYS

COUPDAYSNC COUPNCD

COUPNUM COUPPCD

DB DISC

DOLLARDE EFFECT

FV INTRATE

IRR MIRR

NOMINAL NPV

PMT PRICE

PRICEDISC PRICEMAT

PV RECEIVED

TAXBAND TBILLPRICE

TBILLYIELD

See also:

Other functions 



ACCRINTM(issue, settlement, rate, par, basis)

The ACCRINTM function calculates the accrued interest for a security that pays interest at maturity. 
The function arguments are:

issue is the issue date of the security, 
expressed as a date code

settleme
nt

is the maturity date of the security, 
expressed as a date code 

rate is the annual coupon (interest) rate of 
the security

par is the par or base value of the security 
(if par is omitted, ACCRINTM uses 
$1000)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

The function is calculated using the formula:

ACCRINTM = par * rate * (A / D)
where A is the number of days accrued counted according to a monthly basis and D is the annual year 
basis.

ACCRINTM calculates non-compound (or simple) interest over the security’s period.

For example, you have been issued with a coupon worth $10,000 on July 1st 1997 that comes to 
maturity on September 30th 1997; the coupon’s annual interest rate is 12%; and you want to know 
what the interest will be on September 30th when the coupon achieves maturity. Use the formula:

ACCRINTM(35611, 35702, 0.12, 10000, 3)
to get an interest payment of $299.18.

Other financial functions



COMPOUND (principal, interest, periods)

The COMPOUND function calculates the compound amount, based on the principal and interest rate 
per period over the specified number of periods. The formula used is:

For example, to find out the compound amount on a principal of $500, at an annual interest rate of 
13.5%, over 12 years, use the formula:

COMPOUND(500,13.5%,12)
Ability calculates the compound amount and displays the result 2285.1796 or $2,285.18 (depending on 
the currency formatting of the cell – use the Number command from the Format menu to change it).

Other financial functions



COUPDAYBS(settlement, maturity, frequency, basis)

The COUPDAYBS function calculates the number of days from the beginning of the coupon period to 
the settlement date. The function arguments are:

settleme
nt

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula:

COUPDAYBS(35625, 36037, 4, 1)
returns 45 as the number of days from the beginning of    the coupon period to the settlement date.

Other financial functions



COUPDAYS(settlement, maturity, frequency, basis)

The COUPDAYS function calculates the number of days in the coupon period in which the settlement 
date occurs. The function arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula 

COUPDAYS(35625, 36037, 4, 1) 
returns 92 as the number of days in the coupon period in which the settlement date occurs.

Other financial functions



COUPDAYSNC(settlement, maturity, frequency, basis)

The COUPDAYSNC function calculates the number of days from the settlement date to the next 
coupon date. The function arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y 

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis used, 
where basis is one of the following: 

Basis Day count basis
0 US 30/360
1 Actual/actual 
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula 

COUPDAYSNC(35625, 36037, 4, 1) 
returns 47 as the number of days from the settlement date to the next coupon date.

Other financial functions



COUPNCD(settlement, maturity, frequency, basis)

The COUPNCD function calculates the next coupon date after the settlement date. The function 
arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y 

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula 

COUPNCD(35625, 36037, 4, 1) 
returns August 31st 1997 or 35672 as the next coupon date after the settlement date.

Other financial functions



COUPNUM(settlement, maturity, frequency, basis)

The COUPNUM function calculates the number of coupons payable between the settlement date and 
the maturity date. The function arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y 

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula 

COUPNUM(35625, 36037, 4, 1) 
returns 5 as the number of coupons payable between the settlement date and the maturity date.

Other financial functions



COUPPCD(settlement, maturity, frequency, basis)

The COUPPCD function calculates the previous coupon date before the settlement date. The function 
arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

frequenc
y 

is the number of    coupon payments per
year (1 = annually; 2 = biannually; 4 = 
quarterly)

basis is the type of day count basis to use, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the coupon payments are quarterly, and the day count basis is 
actual/actual. Using the formula 

COUPPCD(35625, 36037, 4, 1) 
returns May 31st 1997 or 35580 as the coupon date before the settlement date. 

Other financial functions



DB(cost, salvage, life, period, month)

The DB function calculates the depreciation of an asset for a specified period using the fixed-declining 
balance method. DB works out a fixed rate which it then uses to calculate depreciation. The function 
arguments are:

cost is the initial value of the asset
salvage is the value at the end of the depreciation
life is the number of years over which the asset 

depreciates 
period is the specified period for which the depreciation is 

sought 
month is the number of months between the purchase date 

and the end of the first period (12 if omitted)

For all periods except the first and last, DB calculates the depreciation per period using the equation:

(cost - total depreciation from previous periods) * rate
where rate is given by:

For depreciation over the first period DB uses the equation:

cost * rate * (month/12)
For depreciation over the last period DB uses the equation:

[(cost - total depreciation from previous periods) * rate * (12 - month)] / 12
For example, a new yacht is purchased for $1,000,000. Its active life is 20 years and its salvage value 
at the end of this time is $50,000. The purchase was made at the end of May and the buyer, who 
attends a boat show at the end of every October,    wishes to know its depreciation over the periods 
between boat shows for the first 4 shows after the initial purchase. The first period is of 5 months (from 
May to October) and the next three periods are whole years. The depreciation for the first 4 periods is 
calculated using these formulas:

DB(1000000, 50000, 20, 1, 5) returns a depreciation of $57,917

DB(1000000, 50000, 20, 2, 5) returns a depreciation of $130,950

DB(1000000, 50000, 20, 3, 5) returns a depreciation of $112,748

DB(1000000, 50000, 20, 4, 5) returns a depreciation of $97,076

Note: A 20-year span contains at most 21 periods, and therefore setting period to greater than 21 will 
result in DB returning a #VALUE error message. 

Other financial functions



DISC(settlement, maturity, par, redemption, basis)

The DISC function calculates the discount rate for a security. The function arguments are:
settlemen
t 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

par is the price of the security per $100 
face value

redempti
on 

is the amount received at maturity 
per $100 face value

basis is the type of day count basis to use, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

DISC is calculated using the formula:

[(redemption - par)/redemption] * B/DSM
where B is the number of days in a year according to the basis used and DSM is the number of days 
between settlement and maturity.

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the price of the security is $95 per $100 face value, the redemption 
value is $100, and the day count basis is actual/actual. Using the formula:

DISC(35625, 36037, 95, 100, 1) 
returns a bond discount rate of 4.429 %. 

Other financial functions



DOLLARDE(fractional_dollar, fraction)

The DOLLARDE function converts a dollar price expressed as a fraction, into a dollar price expressed 
as a decimal number. 

For example, if a dollar value is expressed in 1/16ths of a dollar, the value 7/16 is entered as 0.07 in 
fractional_dollar and the integer 16 is entered in fraction, the formula:

DOLLARDE(0.07, 16) 
returns 0.438. If the fraction is greater than 1/10th only one place is needed after the point.

For example, 3/8ths of a dollar is entered using the formula:

DOLLARDE(0.3, 8)
which returns 0.375. 

Other financial functions



EFFECT(nominal_rate, npery)

The EFFECT function calculates the effective annual interest rate. This uses the given nominal annual 
interest rate, nominal_rate, and the number of periods per year where compound interest is applied, 
npery. EFFECT uses the formula:

For example, the formula:

EFFECT(7 %, 4) 
returns an effective annual interest rate of 7.19% or 0.0719, which is the overall interest rate over a 
year when the interest has been calculated quarterly at 7/4% and compounded.

EFFECT is the inverse of NOMINAL . 

Other financial functions



FV(payment, rate, periods)

The FV function calculates the future value of an annuity, based on the payments per period, interest 
rate per period, and the number of periods for which you want the value calculated. The formula used 
is:

Example 1: The future value of an annuity with annual $500 payments at an interest rate of 13.5% per 
annum, compounded over five years, is calculated using the formula:

FV(500, 13.5%, 5)
Ability calculates the future value and displays 3272.44 or $3,272.44 (depending on the currency 
formatting of the cell – use the Number command from the Format menu to change it).

Example 2: Each month you deposit $50 at a bank. Interest accrues at an annual rate of 13.5% but is 
applied monthly. To calculate the value of the account after six months, use FV in conjuction with 
NOMINAL as follows:

FV(50, NOMINAL(13.5%, 12)/12, 6)
This returns a value of    $308.07. 

Other financial functions



INTRATE(settlement, maturity, investment, redemption, basis)

The INTRATE function calculates the interest rate for a fully invested security. The function arguments 
are:

settlemen
t 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

investme
nt 

is the amount invested in the security

redempti
on 

is the amount received at maturity 

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

INTRATE is calculated using the formula:

[(redemption - investment)/investment] * B/DIM
where B is the number of days in a year according to the basis used and DIM is the number of days 
from settlement to maturity.

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement date is July 15th 1997, the amount invested in the security is $10,000, the redemption value 
is $10,100, and the day count basis is actual/actual. Using the formula 

INTRATE(35625, 36037, 10000, 10450, 1) 
returns an interest rate of 3.98665% for a fully invested security.

Other financial functions



IRR(guess, initial, list)

The IRR function calculates the internal rate of return of a series of cash flows, starting with a guess at 
the correct answer. The internal rate of return is the effective interest rate such that the net present 
value of the cash flow is zero. This function is the inverse of the net present value function.

You should enter the initial cash flow, initial, as a negative number to indicate that it is money received,
rather than money paid out.

For example, to find the internal rate of return of a series of cash flows that start with a negative flow of 
$800, followed by payments of $400, $400, $200, and $100 at even intervals, use the following formula:

IRR(0.15, -800, {400, 400, 200, 100})
Ability calculates the interest rate per period and displays 0.18 or 17.9652% (depending on the percent 
formatting of the cell – use the Number command from the Format menu to change it). 

In this example, the result shows that if you borrow $800 and make annual payments of $400, $400, 
$200 and $100, the underlying interest rate charged to you would be 17.9652%. 

Other financial functions



MIRR(finance_rate, reinvest_rate, list)

The MIRR function calculates a modified internal rate of return where positive cashflows earn interest 
at a reinvest_rate and negative cash flows are financed at a finance_rate. The cashflows are 
contained in list and will usually begin with a negative figure, indicating that you start with a loan.

MIRR is calculated as follows:

where net interest is the return on the reinvested positive cashflows less the interest accrued on the 
negative cashflows.

For example, suppose you were loaned $1000.00 to invest in a business venture and you pay interest 
on this loan at 15%. You predict that at the end of each of the first four years the business will generate 
the following cash flow: $500, $700, $700, $900. Further suppose that you reinvest the earnings at a 
fixed rate of 10% and this will compound over the four years.

At the end of the first year, you’ll receive $500, which will be reinvested but you’ll also have to take into 
account the interest on the loan, which will be $150 at this time. Over the years, net interest will 
accumulate as follows:

Period (n) Cash flow Interest1 Interest2 Interest3 Interest4 å Interest
1 -1000 -150.00 -172.50 -198.36 -228.13 -748.99
2 500 50.00 55.00 60.50 165.50
3 700 70.00 77.00 147.00
4 700 70.00 70.00
5 900 0.00

-366.49
After four years, the original $1000 has generated earnings of 500+700+700+900=$2800 less net 
interest of $366.49 = $2433.51. This can be expressed as a rate of return, over four years, of 143.35% 
or [(1+ 143.35%)^(1/4) -1] = 24.9% per annum.

The same result can be obtained using the MIRR functions as follows:

MIRR(15%, 10%, -1000, 500, 700, 700, 900)
which Ability calculates as 24.90%. 

Other financial functions



NOMINAL(effect_rate, npery)

The NOMINAL function calculates the annual nominal interest rate. This uses the given effective annual
interest rate, effect_rate, and the number of periods per year where compound interest is applied, 
npery. NOMINAL uses the formula:

For example, the bank quotes an annual interest of 7.19% and calculates interest quarterly, which is 
then compounded over the year. What is actual interest rate in a given quarter? Use the formula:

NOMINAL(7.19%, 4)/4
which returns a rate of 1.75%.

NOMINAL is the inverse of EFFECT . 

Other financial functions



NPV(rate, list)

The NPV function calculates the net present value of a set of future cash flows. Ability assumes that the
first cash flow occurs at the end of the first period, which means the initial payment is usually not 
included. (Compare this with the IRR function.)

Ability calculates the net present value according to the following formula:

n is the number of items in the list and listi is the ith element in the list.

In the function, enter rate as the effective interest rate per period. Enter list as the value of the 
payments in the order they appear, one payment per period. If you enter list as a range that includes 
several rows and columns, Ability reads the range from left to right and top to bottom. If blank cells are 
in the range, Ability skips them when calculating the net present value.

For example, to find the net present value of cash flows of $400, $300, $300, and $200 and assuming 
inflation will run at 13.25%, type the following formula:

NPV(13.25%,400,300,300,200)
Ability calculates the net present value and displays 915.23 or $915.23 (depending on the currency 
formatting of the cell – use the Number command from the Format menu to change it). This shows that 
the real value of these future payments is much less than the sum of the payments after inflation has 
eroded the cash flow.

You can also use NPV with the COMPOUND function to calculate the end value of a series of 
payments, reinvested over a period of time. Suppose you know you’ll receive payments of $400, $300, 
$300, and $200 over the next four years, and you’ll reinvest these payments in an account bearing 
interest of 12% per annum, compounded over the four years. After the four years, how much will be in 
the account? This is given using the following formula:

COMPOUND(NPV(13.25%, 400, 300, 300, 200), 13.25%, 4)
Ability calculates the answer as $1505.51. 

Other financial functions



PMT(principal, rate, periods)

The PMT function calculates the amount of payment required per period to pay off a loan or mortgage 
at the given principal, interest rate per period, and number of periods. Ability calculates the payment 
based on the following formula:

Often the payment amounts end up as fractional numbers. In such cases, you can include the ROUND 
function to calculate the payments as even amounts.

To find the payments required to pay off a $17,000 loan, at 14.25% interest per annum, over a period of
3 years, use the following formula:

PMT(17000, 14.25%, 3)
Ability calculates the payments and displays 7353.17 or $7,353.17 per year (depending on the currency
formatting of the cell – use the Number command from the Format menu to change it).

To find the payments required per period when the interest is compounded monthly, use PMT in 
conjunction with EFFECT as follows:

PMT(17000, EFFECT(14.25%, 12) / 12, 36)
Ability calculates the monthly payments at $591.13. 

Other financial functions



PRICE(settlement, maturity, rate, yield, redemption, frequency, basis)

The PRICE function calculates the price per $100 face value of a security that pays periodic interest. 
The function arguments are:

settlemen
t 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

rate is the annual coupon rate of the 
security

yield is the annual yield of the security
redempti
on 

is the redemption value of the 
security per $100 face value

frequenc
y

is the number of coupon payments 
per year (1 = annually; 2 = 
biannually; 4 = quarterly)

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

For example, if a bond has settlement date 15/July/1992, maturity date 15/September/1999, annual 
coupon rate of 6.50%, annual yield of 7.25%, redemption value of $100, two coupon payments per 
year, and is calculated according to a year basis of US 30/360, then use the formula

PRICE(33799, 36417, 6.50%, 7.25%, 100, 2, 0). 
This returns a bond price of $95.852. 

Other financial functions



PRICEDISC(settlement, maturity, discount, redemption, basis)

The PRICEDISC function calculates the price per $100 face value of a discounted security. The 
function arguments are:

settlemen
t 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

discount is the discount rate of the security
redempti
on 

is the redemption value of the 
security per $100 face value

basis is the type of day count basis used, 
where basis is one of the following:

Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

The formula used is:

redemption - (discount * redemption * DSM/B)
where B is the number of days in a year according to the year basis used and DSM is the number of 
days from settlement to maturity.

For example, if a bond has settlement date 15th July, 1997, maturity date 31st October, 1997, discount 
rate of 4.9%, and redemption value $100, with a year basis of actual/365, then the formula 

PRICEDISC(35625, 35733, 0.049, 100, 3) 
returns a price of $98.55. 

Other financial functions



PRICEMAT(settlement, maturity, issue, rate, yield, basis)

The PRICEMAT function calculates the price per $100 face value of a security that pays interest at 
maturity. The function arguments are:

settleme
nt 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

issue is the issue date of the security, 
expressed as a date code

rate is the interest rate of the security at 
date of issue

yield is the annual yield of the security
basis is the type of day count basis used, 

where basis is one of the following:
Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

The formula used is:

[100 + (DIM/B * rate * 100)] / [1 + (DSM/B * yield)]    - (A/B * rate * 100), 
where

B is the number of days in a year according to year 
basis used

DSM is the number of days from settlement to maturity
DIM is the number of days from issue to maturity 
A is the number of days from issue to settlement.

For example, if a bond has settlement date 15th July, 1997, maturity date 31st October, 1997, and 
issue date 1st October, 1996, with an interest rate of 4.9% at date of issue and an annual yield of 5.4%,
and is calculated according to a 30/360 year basis, then the formula:

PRICEMAT(35625, 35733, 35338, 0.049, 0.054, 0) 
which returns a price of $99.79. 

Other financial functions



PV(payment, rate, periods)

The PV function calculates the present value of an annuity, based on the amount of the payment, the 
interest rate per period, and the number of periods. Ability computes present value using the following 
formula:

For example, to find the present value of an annuity with payments of $400, at 12.5% interest per 
period, after 4 periods, type:

PV(400,12.5%,4)
Ability calculates the present value and displays 1202.26 or $1,202.26 (depending on the currency 
formatting of the cell – use the Number command from the Format menu to change it). 

Other financial functions



RECEIVED(settlement, maturity, investment, discount, basis)

The RECEIVED function calculates the amount received at maturity for a fully invested security. The 
function arguments are:

settlemen
t 

is the settlement date of the security, 
expressed as a date code

maturity is the maturity date of the security, 
expressed as a date code 

investme
nt 

is the amount invested in the security

discount is the discount rate of the security 
basis is the type of day count basis used, 

where basis is one of the following:
Basis Day count basis
0 US 30/360
1 Actual/actual
2 Actual/360
3 Actual/365
4 or omitted European 30/360

RECEIVED is calculated using the formula:

investment / [1 - (discount * DIM/B)]
Where B is the number of days in a year according to the basis used and DIM is the number of days 
from issue to maturity.

For example, you have been issued with a bond that comes to maturity on August 31st 1998, the 
settlement (issue) date is July 15th 1997, the amount invested in the security is $10,000, the discount 
rate is 4.2%, and the day count basis is actual/actual. Using the formula:

RECEIVED(35625, 36037, 10000, 0.042, 1) 
returns a total amount received at maturity of $10,497.68. 

Other financial functions



TAXBAND(income, taxrates, taxbands)

The TAXBAND function calculates the total tax payable on a given income subject to a series of 
banded tax rates. taxrates and taxbands are both lists and must be of equal length.

The function is calculated summing the tax rate and band product over the number of items in each list:

where n is the number of items in each list and taxband[n+1] is defined as being equal to income.

Example 1: suppose you earned £28,800 in the tax year ending 1996 and had a tax-free personal 
allowance of £3,525. The tax rates for that year were 20% on the first £3,200 of taxable income, 25% 
up to £24,300 and 40% on the remainder. You would use the TAXBAND function to calculate tax due as
follows:

TAXBAND(28800, {20%, 25%, 40%}, {3525, 6725, 27825}) = 6305
Note that the personal allowance needs to be added back onto the taxbands in this example because 
the supplied figures are net of this amount.

Example 2: suppose you want to subtract tax-free earnings before calculating tax due. You can use 
TAXBAND as follows:

TAXBAND(28800-3525, {20%, 25%, 40%}, {0, 3200, 24300}) = 6305
Some governments publish tax bands in this format.

Example 3: suppose a proportion of your income of £28,800 was taxed at source to contribute towards 
health care. The tax was at a flat rate of 7.3% on all income over £6,640 up to a ceiling of £22,880. The
tax can be calculated as follows:

TAXBAND(28800, {7.3%, 0%}, {6640, 22880}) = 1185.52
Other financial functions



TBILLPRICE(settlement, maturity, discount)

The TBILLPRICE function calculates the price per $100 face value for a Treasury bill. The function 
arguments are:

settlement is the settlement date of the Treasury bill, 
expressed as a date code

maturity is the maturity date of the Treasury bill, expressed
as a date code 

discount is the discount rate of the Treasury bill

TBILLPRICE is calculated using the formula:

100 * [1 - (discount * DSM/360)]
where DSM is the number of days from the settlement to the maturity date.

The maturity date should not be more than 1 calendar year after the settlement date, otherwise an error
message is returned.

For example, a Treasury bill has settlement date 10th May, 1997 and maturity date 1st November, 
1997. The discount rate is 7%. The formula:

TBILLPRICE(35559, 35734, 0.07)
returns a price of $96.60. 

Other financial functions



TBILLYIELD(settlement, maturity, par)

The TBILLYIELD function calculates the yield for a Treasury bill. The yield is a measure of the value per
dollar spent when the bill reaches maturity, expressed as an annual interest rate. The function 
arguments are:

settlement is the settlement date of the Treasury bill, 
expressed as a date code

maturity is the maturity date of the Treasury bill, expressed
as a date code 

par is the price per $100 face value of the Treasury 
bill

TBILLYIELD is calculated using the formula:

[(100 - par)/par] * 360/DSM]
where DSM is the number of days from the settlement to the maturity date.

The maturity date should not be more than 1 calendar year after the settlement date, otherwise an error
message is returned.

For example, a Treasury bill has settlement date 10th May, 1997 and maturity date 1st November, 
1997. The price per $100 of the Treasury bill is $95.75. The formula:

TBILLYIELD(35559, 35734, 95.75) 
returns a yield of 9.13%. 

Other financial functions



Logical functions
You can use the built-in logical functions to test for specific conditions in a calculation.

Logical functions generally either return an answer of TRUE or FALSE or are based on a condition that 
evaluates to TRUE or FALSE. The value FALSE equates to zero and TRUE as 1 (or anything non-
zero).

Here is a list of logical functions in Ability:

AND

IF

NOT

OR

See also:

Logical operators 

Other functions 



AND(list of logical conditions)

The AND function returns the logical AND of its arguments. The arguments must be logical conditions 
that can take the value TRUE or FALSE.

Examples:
AND(TRUE, TRUE) returns TRUE
AND(TRUE, FALSE) returns FALSE
AND(6 < 10, 40 > 20) returns TRUE

See also:

Logical operators 

Other logical functions 



IF(x, true, false)

The IF function calculates x and evaluates it; if x is TRUE (or not zero), the true value is displayed; if x 
is FALSE (or zero), the false value is displayed.

For example:

IF(m > n, m, n)
returns the larger value of m and n.

You can use logical and relational operators in an IF function. For example:

 IF (A2 > 5 & A2 < 7, "A2 is OK", "A2 is not OK")
If the value in the cell A2 is greater than 5 and less than 7, Ability displays the true value "A2 is OK"; 
otherwise, Ability displays the false value "A2 is not OK". 

See also:

Logical operators 

Other logical functions 



NOT(logical)

The NOT function returns the logical NOT of its argument. The argument should have a logical value of 
TRUE or FALSE, which NOT then negates to give the opposite value. 

For example:
NOT(TRUE) returns FALSE
NOT(2+2=5) returns TRUE

See also:

Logical operators 

Other logical functions 



OR(list of logical conditions)

The OR function returns the logical OR of its arguments. The arguments must be logical conditions that
can take the value TRUE or FALSE.

For example:
OR(FALSE, FALSE) returns FALSE
OR(TRUE, FALSE) returns TRUE
OR(2*3 < 7, 100 = 10) returns TRUE

See also:

Logical operators 

Other logical functions 



Mathematical functions
You use the built-in mathematical functions to perform arithmetic and other calculations. With these 
functions you can also work with angles, logarithms and factorials.

Here is a complete list of mathematical functions in Ability:

ABS ACOSH

ACOTANH ASINH

ATANH COSH

COTANH DIVIDE

EVEN EXP

FACT FACTDOUBLE

GCD INT

LCM LN

LOG LOG10

MDETERM MINUS

MOD MULTINOMIAL

ODD PLUS

POWER RAND

RANDBETWEEN ROUND

ROUNDDOWN ROUNDUP

SERIESSUM SIGN

SINH SQR

SQRT SUM

SUMSQ SUMTIMES

SUMX2MY2 SUMX2PY2

SUMXMY2 SUMXPY2

TANH TIMES

TOTAL

See also:

Other functions 



ABS(x)

The ABS function calculates the absolute value (i.e. it removes a negative sign if present) of a single 
number, x. You can also enter x as a single cell address or cell name.

For example:
ABS(31) returns 31
ABS(-31) returns 31
ABS(B6) returns positive value of the cell 

B6

Other mathematical functions 



ACOSH(x)

The ACOSH function calculates the inverse hyperbolic cosine of a number. Number must be greater 
than or equal to 1. 

Other mathematical functions 



ACOTANH(x)

The ACOTANH function calculates the inverse hyperbolic cotangent of a number. 

Other mathematical functions 



ASINH(x)

The ASINH function calculates the inverse hyperbolic sine of a number. 

Other mathematical functions 



ATANH(x)

The ATANH function calculates the inverse hyperbolic tangent of a number. Number must be between -
1 and 1 ( excluding -1 and 1). 

Other mathematical functions 



COSH(x)

The COSH function calculates the hyperbolic cosine of a number, using the formula:

COSH(x) = (EXP(x)    + EXP(-x)) / 2
See also:

EXP(x) 

Other mathematical functions 



COTANH(x)

The COTANH function calculates the hyperbolic cotangent of a number. 

Other mathematical functions 



DIVIDE(list)

The DIVIDE function calculates the division of its arguments.

For example:

DIVIDE(10, 2, 4)
returns the value 1.25, having divided 10 by 2, and the result of this by 4. The list can also be a range 
in a spreadsheet, as folllows:

DIVIDE(A1..A10).
Other mathematical functions 



EVEN(x)

The EVEN function rounds a number up to the nearest even integer. The number will be rounded up 
away from 0, whether it is + or -.

For example:
EVEN(3) returns 4
EVEN(-3) returns -4.

Other mathematical functions 



EXP(x)

The EXP function calculates the value of e to the power x, according to the following:

where e is the base of the natural logarithms and is approximately equal to 2.718282. 

Other mathematical functions 



FACT(n)

The FACT function calculates the factorial of a number n where n is traditionally a positive integer. The 
factorial of n is defined as:

n * (n-1) * (n-2) *…….* 4 * 3 * 2 * 1
with the factorial of n = 0 being defined as 1.

For example:

FACT(4)
returns 24 as calculated by 4 * 3 * 2 * 1.

FACT can be used to determine the probability of ordered events. For example, the probability of 
drawing 6 balls, numbered 1 through 6, in the precise sequence 1, 2, 3, 4, 5, 6 is given by the formula:

1/FACT(6)
which returns 0.001389.

FACT can be used with numbers having a fractional part. The factorial of x where x is not an integer, is 
calculated using the formula:

x * (x - 1) * (x - 2) *…..*    (x - n)
where 2 > (x - n) > 1. 

The factorial of any number 0 < x < 1 is defined as 1. For example:

FACT(0.5) returns 1

FACT(1.5) returns 1.5

FACT(3.5) returns 3.5 * 2.5 * 1.5 = 13.125

Factorial functions do not work with negative numbers, so if you enter a negative number Ability 
displays #VALUE in the cell. 

Factorial calculations can create very large numbers. The factorial of any number bigger than 170 will 
cause overflow errors and #VALUE will be returned. 

Other mathematical functions 



FACTDOUBLE(n)

The FACTDOUBLE function calculates the double factorial of a number n. It takes into account whether
n is even or odd, and then carries out a factorial calculation using either the even or the odd numbers 
up to n.

For example:

FACTDOUBLE(5) returns 15, that is 5 * 3 * 1.

FACTDOUBLE(6)            returns 48, that is 6 * 4 * 2.

FACTDOUBLE also works with fractional numbers (See FACT). For example:

FACTDOUBLE(5.5) returns 28.875, that is 5.5 * 3.5 * 1.5

FACTDOUBLE(6.5) returns 73.125, that is 6.5 x 4.5 x 2.5.

Other mathematical functions 



GCD(list)

The GCD function calculates the greatest common divisor of a list of integers. The greatest common 
divisor is the largest integer that exactly divides all the integers in a list.

For example:

GCD(24, 36) returns 12

GCD(24, 36, 72) returns 12

GCD(2, 7, 9) returns 1 

Other mathematical functions 



INT(x)

The INT function returns the integer part of the value x.

For example:

INT(3.12543) 
returns 3. 

Other mathematical functions 



LCM(list)

The LCM function calculates the least common multiple of a list of numbers.

For example:

LCM(3,7,21) 
returns 21, which is the smallest number that is a common multiple of 3, 7 and 21. 

Other mathematical functions 



LN(x)

The LN function calculates the natural logarithm of the number x, for any positive number. Natural 
logarithms are based on the constant e which is approximately 2.718281828.

Note that LN is the inverse of the EXP function. 

Other mathematical functions 



LOG(x, b)

The LOG function calculates the logarithm of the positive number x to a specified base b If b is omitted,
LOG uses 10 instead.

For example:

LOG(8, 2) 
returns the value 3, since 2 raised to the power 3 = 8.

LOG(1e6)
returns 6, since 10 raised to the power 6 = 1,000,000 = 1e6.

Other mathematical functions 



LOG10(x)

The LOG10 function calculates the logarithm of the number x to base 10, for any positive number.

For example:

LOG(80)
returns 1.9031 since 10 raised to the power 1.9031 is approximately 80. 

Other mathematical functions 



MDETERM(array)

The MDETERM function calculates the matrix determinant of an array. Array must be numeric, have an 
equal number of rows and columns, and not contain any empty cells. If these conditions are not met 
MDETERM will return a #VALUE error message. Array can be given as numeric constants, for example

MDETERM({3,7,9; 1,7,2; 4,3,2})
or call upon a range of cells containing numeric values:

MDETERM(A1..C3)
MDETERM can be used to solve systems of linear equations. For example, the system of linear 
equations

2x -y + 2z = 2
x + 10y - 3z = 5
-x + y + z = -3

can be arranged so that the coefficients appear in the cell range A1..D3 as follows:
row/
col

A B C D

1 2 -1 2 2
2 1 10 -3 5
3 -1 -1 1 -3

The system of equations can then be solved using the following formulas:

x is given by =MDETERM({2, 5, -3; -1, 10, 1; 2, -3, 1}) / MDETERM(A1..C3) = 2
y is given by =MDETERM({2, 1, -1; 2, 5, -3; 2, -3, 1}) / MDETERM(A1..C3) = 0
z is given by =MDETERM({2, 1, -1; -1, 10, 1; 2, 5, -3}) / MDETERM(A1..C3) = -1

See also:

Arrays 

Other mathematical functions 



MINUS(list)

The MINUS function calculates a successive subtraction from the first item of list, all other items of list.
For example:

MINUS(10, 3, 4) returns 3, that is 10 - 3 - 4

MINUS(10, 3, -4) returns 11, that is 10 - 3 - (-4)

Other mathematical functions 



MOD(x, y)

The MOD function calculates the remainder of x divided by y according to the following formula:

MOD(x, y) = x - (y * INT(x / y))
You can calculate the fractional part of a number x using:

MOD(x,1)
See also:

INT(x) 

Other mathematical functions 



MULTINOMIAL(list)

The MULTINOMIAL function calculates the multinomial of a list of numbers. The function is calculated 
using according to the following:

MULTINOMIAL (a, b, c) = FACT(a + b +c) / [FACT(a)*FACT(b)*FACT(c)] 
For example:

MULTINOMIAL(1, 2, 3) 
returns 60. 

See also:

FACT(n) 

Other mathematical functions 



ODD(x)

The ODD function rounds a number up to the nearest odd integer.

For example:

ODD(4) returns 5

ODD(1.5) returns 3

ODD(-2) returns -3

Other mathematical functions 



PLUS(list)

The PLUS function calculates the sum of its arguments.

For example:

PLUS(3, 4, 6) returns 13, that is 3+4+6

PLUS(3, 4, -6) returns 1, that is 3+4+(-6)

Other mathematical functions 



POWER(list)

The POWER function calculates the result of a number raised to a power. The first argument place in 
the list contains the number and any places after this contain the power or powers. 

For example:

POWER(2, 3) returns 8, that is 2^3

POWER(2, 3, 2) returns 64, that is (2^3)^2

Other mathematical functions 



RAND(x)

The RAND function generates a random number from 0 to x (including 0 but excluding x). Each time 
you enter a RAND function, Ability displays a new random number.

For example:

RAND(100) 
generates a number from 0 to 100 (excluding 100).

Note that in Spreadsheet, you can recalculate RAND using the Calculate Now command from the Tools
menu.

Other mathematical functions 



RANDBETWEEN(bottom, top)

The RANDBETWEEN function calculates a random number between the numbers you specify as 
function arguments. Each time you enter a RANDBETWEEN function, Ability displays a new random 
number.

For example

RANDBETWEEN(100, 200)
generates a number from 100 to 200 (excluding 200).

Note that in Spreadsheet, you can recalculate RANDBETWEEN using the Calculate Now command 
from the Tools menu.

Other mathematical functions



ROUND(x, y)

The ROUND function calculates the value of x rounded to the nearest y.

For example:

ROUND(2.8234, 1) returns 3 (round to nearest whole number)

ROUND(2.8234, 0.01) returns 2.82 (round to nearest hundredth)

ROUND(2678, 100) returns 2700 (round to nearest hundred)

Other mathematical functions 



ROUNDDOWN(number, num_digits)

The ROUNDDOWN function rounds a number down, that is towards 0. num_digits is a positive or 
negative integer which specifies the number of digits to which you want to round down. num_digit set 
to a positive integer will round down to the right of the decimal point (the fractional part); set to a 
negative integer will round down to the left of the decimal point (the whole number part).

For example:

ROUNDDOWN(2.8234, 1)    returns 2.8

ROUNDDOWN(2.8234, 0)          returns 2

ROUNDDOWN(2678, -2)            returns 2600

Other mathematical functions 



ROUNDUP(number, num_digits)

The ROUNDUP function rounds a number up, away from 0. num_digits is a positive or negative 
integer which specifies the number of digits to which you want to round up. num_digit set to a positive 
integer will round up to the right of the decimal point (the fractional part); set to a negative integer will 
round up to the left of the decimal point (the whole number part).

For example:

ROUNDUP(2.8234, 1) returns 2.9

ROUNDUP(2.8234, 0) returns 3

ROUNDUP(2678, -2) returns 2700

Other mathematical functions 



SERIESSUM(x, n, m, coefficients)

The SERIESSUM function calculates the sum of a power series as follows

where coefficients is the list denoted by a1, a2, a3 …. aj.

Power series expansions are useful in approximating many functions. The function arguments are:
x is a variable that contains the input value to 

the power series
n is the initial power to which x is to be raised
m is the step by which n is to be increased for 

each term of the series
coefficients is a set of coefficients by which the 

successive powers of x are to be multiplied. 
The number of coefficients determines the 
number of terms in the power series.

For example, a power series can be used to approximate the function SIN(x). The power series 
expansion for SIN(x) is:

x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ….

The sequence of coefficients 1, -1/3!, 1/5!, -1/7! ….. can be written as

(-1)^0, ((-1)^1)/(m + n)!, ((-1)^2)/(2m + n)!, ((-1)^3)/(3m + n)! ….. where n = 1 and m =2.

Thus to calculate sin(45°) or, in radians, sin(p/4), set n = 1, m = 2, x = p/4, and put the coefficients that 
are to be used in a range. In a spreadsheet, if B1..B5 contain the first 5 coefficients (i.e. 1, -1/FACT(3), 
1/FACT(5), -1/FACT(7), 1/FACT(9)), then the following formula can be used to approximate the sine 
function: 

SERIESSUM(PI()/4, 1, 2, B1..B5) 
which returns 0.707107.

The accuracy of the approximation depends, of course, on how many coefficients are used. The 
greatest accuracy possible is attained when the number of coefficients used is infinite! Note that 
computational modeling of mathematical functions such as sine and cosine is ultimately achieved by 
using power series expansions.

Other mathematical functions 



SIGN(x)

The SIGN function returns the sign of a number, according to the following convention: 1 stands for x is
positive; 0 stands for x is zero; -1 stands for x is negative.

For example: 

SIGN(20 - 20) returns    0

SIGN(-87) returns -1

SIGN(20) returns    1

Other mathematical functions 



SINH(x)

The SINH function calculates the hyperbolic sine of a number x, using the formula:

SINH(x) = (EXP(x) - EXP(-x)) / 2
See also:

EXP(x) 

Other mathematical functions 



SQR(x)

The SQR function calculates the square of a number x.

For example

SQR(5) 
returns 25, that is 5 raised to the power 2.

Other mathematical functions 



SQRT(x)

The SQRT function calculates the square root of x. The value x must be equal to or greater than zero. 
If it is not, #VALUE is displayed. 

Other mathematical functions 



SUM(list)

The SUM function calculates the total of the values in the list. The list can be numbers, cell addresses, 
ranges, and cell names. The SUM function is the same as the TOTAL function. 

Here are some examples:

SUM(12, 255, 10)
SUM(A5..C9) 
SUM(Sales, C2, Expenses, Equip)

Other mathematical functions 



SUMSQ(list)

The SUMSQ function calculates the sum of the squares of a list of numbers.

For example

SUMSQ(3, -2, 2) 
returns 17, that is 3^2 + (-2)^2 + 2^2. 

Other mathematical functions 



SUMTIMES(range1, range2, range3…)

The SUMTIMES function calculates the sum of the products of corresponding values from two or more 
arrays. 

The array arguments must have the same dimensions or the error message #VALUE will be returned. 
Non-numeric values will be counted as 0. The array components can be entered as a range.

For example:

SUMTIMES({1,2,3}, {2,3,4}) returns 20, that is 1*2 + 2*3 + 3 * 4

SUMTIMES({1,2},{3,4}, {5,6}) returns 63, that is 1*3*5 + 2*4*6

SUMTIMES({2,3; 4,6}, {7,5; 4,9}) returns 99, that is 2*7 + 3*5 + 4*4 + 6*9

SUMTIMES(A1..B2, D1..E2) returns A1*D1 + B1*E1 + A2*D2 + B2*E2 

Other mathematical functions 



SUMX2MY2(range_x, range_y)

The SUMX2MY2 function calculates the sum of the differences of squares of corresponding values in 
two arrays, according to the formula:

The number of values in both arrays must be the same.

For example:

SUMX2MY2({4,5,6}, {7,4,3}) 
returns 3, that is (4^2 - 7^2) + (5^2 - 4^2) +(6^2 - 3^2).

Other mathematical functions 



SUMX2PY2(range_x, range_y)

The SUMX2PY2 function calculates the sum of the sum of squares of corresponding values in two 
arrays, according to the formula:

The number of values in both arrays must be the same.

For example:

SUMX2PY2({4,5,6}, {7,4,3}) 
returns 151, that is (4^2 + 7^2) + (5^2 + 4^2) + (6^2 + 3^2). 

Other mathematical functions 



SUMXMY2(range_x, range_y)

The SUMXMY2 function calculates the sum of squares of differences of corresponding values in two 
arrays, according to the formula:

The number of values in both arrays must be the same.

For example:

SUMXMY2({4,5,6}, {7,4,3}) 
returns 19, that is (4 - 7)^2 + (5 - 4)^2 + (6 - 3)^2. 

Other mathematical functions 



SUMXPY2(range_x, range_y)

The SUMXPY2 function calculates the sum of squares of sum of corresponding values in two arrays, 
according to the formula:

The number of values in both arrays must be the same.

For example:

SUMXPY2({4,5,6}, {7,4,3}) 
returns 283, that is (4 + 7)^2 + (5 + 4)^2 + (6 + 3)^2. 

Other mathematical functions 



TANH(x)

The TANH function calculates the hyperbolic tangent of a number x, calculated as follows:

TANH(x) = SINH(x) / COSH(x).
Other mathematical functions 



TIMES(list)

The TIMES function calculates the product of a list of numbers.

For example:

TIMES(4, 5, 6)
 returns 120, that is 4*5*6. 

Other mathematical functions 



TOTAL(list)

The TOTAL function calculates the total of the list. The list can be numbers, cell addresses, ranges, and
cell names. This function is the same as the SUM function.

Other mathematical functions 



Trigonometric functions
You use the trigonometric functions to solve standard trigonometry problems, such as computing the 
cosine of a given angle.

Note that all angles must be supplied in radians where pi/2 radians = 90 degrees, and all answers will 
be given in radians. To convert radians to degrees and degrees to radians use the DEGREES and 
RADIANS functions respectively.

Here is a complete list of trigonometric functions in Ability:

ACOS ACOTAN

ASIN ATAN

ATAN2 COS

COTAN DEGREES

PI RADIANS

SIN SQRTPI

TAN

See also:

Other functions 



ACOS(x)

The ACOS function calculates the inverse cosine of the number x. The result is given in radians.

Other trigonometric functions



ACOTAN(x)

The COTAN function calculates the two-quadrant inverse cotangent of the number x. The result is 
given in radians. 

Other trigonometric functions



ASIN(x)

The ASIN function calculates the inverse sine of the number x. The result is given in radians. 

Other trigonometric functions



ATAN(x)

The ATAN function calculates the two-quadrant inverse tangent of the number x. The result is given in 
radians. 

Other trigonometric functions



ATAN2(x, y)

The ATAN2 function calculates the four-quadrant determination of the angle formed by the point (x, y) 
and the x-axis. The result is given in radians. 

Other trigonometric functions



COS(x)

The COS function calculates the cosine of the number x, where x is an angle given in radians. 

Other trigonometric functions



COTAN(x)

The COTAN function calculates the cotangent of    the number x, where x is an angle given in radians. 

Other trigonometric functions



DEGREES(angle)

The DEGREES function converts an angle expressed in radians to degrees. 

Other trigonometric functions



PI()

The PI function always returns the universal constant p or 3.14159265359 approximately. 

Other trigonometric functions



RADIANS(angle)

The RADIANS function converts an angle expressed in degrees to radians. 

Other trigonometric functions



SIN(x)

The SIN function calculates the sine of x, where x is an angle given in radians. 

Other trigonometric functions



SQRTPI(x)

The SQRTPI function calculates the square root of a number x multiplied by p, according to the 
formula:

See also:

PI() 

Other trigonometric functions



TAN(x)

The TAN function calculates the tangent of x, where x is an angle given in radians. 

Other trigonometric functions



Lookup functions
The built-in functions listed in this section are known as the Lookup Functions. You use these functions 
to search and find the location of specific information. These functions are most useful if you are 
working with tax tables or other kinds of spreadsheet tables that you want to use for looking up and 
referring to information.

Here is a complete list of lookup functions in Ability:

ADDRESS AREAS

CHOOSE COLUMN

COLUMNS FIND

FINDEX INDEX

LOOKUP LOOKUPEX 

ROW ROWS

See also: 

Other functions 



ADDRESS(row_number, column_number, abs_mode)

The ADDRESS function calculates the location of a reference to a single cell and returns it as text. 

The row and column numbers, and the mode number determine the address as well as its mode. In 
Spreadsheet, for example, the row number will specify the row number of the spreadsheet, the column 
number will specify the column letter, and the mode number will specify whether the reference address 
is absolute or relative according to the following key:

abs_mode Reference
1 Absolute
2 Absolute row, relative column
3 Relative row, absolute column
4 or omitted Relative

For example:

ADDRESS(1,1,1) returns $A$1

ADDRESS(10,5,3) returns $E10

ADDRESS(100,200) returns GR100

Other lookup functions 



AREAS(list)

The AREAS function calculates the number of areas in a reference or list of references. An area is a 
range of cells that are contiguous, including a single cell.

For example:

AREAS(A1..D3, E10) 
returns 2. 

Other lookup functions 



CHOOSE(index_num, list)

The CHOOSE function chooses a value from a list of values. index_num is the position of the value in 
list. The arguments of list can be numbers, formulas, text, cell references or ranges.

For example: 

CHOOSE(3, "Sales", "Profit", "Cost")
returns "Cost".

CHOOSE can also return a range which can be use in conjunction with other functions. For example:

SUM(CHOOSE(2, A1..A3, B1..B3, C1..C3))
returns the result of SUM(B1..B3). 

Other lookup functions 



COLUMN(ref)

The COLUMN function returns the column number of ref according to the following:
ref returns
cell column number
range number of leftmost column in a 

range
omitted current column number

For example:
COLUMN(Z100) returns 26
COLUMN(D5..G10) returns 4
COLUMN(mycell) returns the column number of a 

named cell, mycell, or the 
leftmost column within mycell if it
is a range.

COLUMN( ) returns 5 if the function is 
entered in any cell in column E

Other lookup functions 



COLUMNS(array)

The COLUMNS function returns the number of columns in a reference or array.

For example:

COLUMNS(F1..H10) returns 3

COLUMNS({1, 2; 9, 8}) returns 2

If you have created a named range called myarea, that refers to the range A1..D4, then: 

COLUMNS(myarea) returns 4

Other lookup functions 



FIND(value, list)

The FIND function searches the list to find where the item that is less than or equal to    value occurs in
the list. The list can contain numbers, text, cell addresses, ranges, and cell names. 

The list must be sorted in ascending order (as contrasted with the FINDEX function).

For example

FIND(19, 1, 15, 20, 30, 35, 40)
returns 2, the second position in the list, as 15 is the last value in the list that is less than or equal to the
test value.

If the list you want to search is a range that contains several rows and several columns, Ability 
searches the range from left to right and top to bottom.

The FIND function is similar to the LOOKUP function, except that LOOKUP returns an actual value, not
just the position of the value in a list.

The INDEX function is also similar to the FIND function, except that with INDEX, you enter the position 
in a list, rather than a test value.

Other lookup functions 



FINDEX(value, list)

The FINDEX function searches the list and returns the position of value in the list. If list does not 
contain value, #VALUE is returned.

The list can contain numbers, text, cell addresses, ranges, and cell names. The list can be in any order 
(as contrasted to the FIND function).

For example

FINDEX(15, 18, 15, 10, 3, 35, 12)
returns 2, the second position in the list.

If the list you want to search is a range that contains several rows and several columns, Ability 
searches the range from left to right and top to bottom.

The FINDEX function is similar to the LOOKUPEX function, except that LOOKUPEX returns an actual 
value, not just the position of the value in a list.

The INDEX function is also similar to the FINDEX function, except that with INDEX, you enter the 
position in a list, rather than a test value.

Other lookup functions 



INDEX(number, list)

The INDEX function returns the value in a list that is in the position given by number. The list can be 
numbers, text, cell addresses, ranges, and cell names. Ability searches the list and returns the value 
that occurs in the specified position.

For example:

INDEX(2, 1, 15, 20, 30, 35, 40)
returns 15, which is in the second position in the list. 

Other lookup functions 



LOOKUP(value, in_range, out_range)

The LOOKUP function searches the list in_range, to find the last item that is less than or equal to 
value and returns the corresponding item from the list out_range.
The in_range must be sorted into ascending order (use LOOKUPEX for unsorted lists). If it isn’t, Ability
may display an unexpected answer. LOOKUP works with both sorted numbers and text.

For example:

LOOKUP(3, {1, 2, 3, 4, 5}, {10, 20, 30, 40, 50}) returns 30

LOOKUP("red", {"blue", "red", "yellow"}, {3, 2, 1}) returns 2

The LOOKUP function produces the same result as combining the INDEX and FIND functions in this 
format:

INDEX(FIND(x, in_range), out_range)
Other lookup functions 



LOOKUPEX(value, in_range, out_range)

The LOOKUPEX function searches the list in_range, to find the item that is equal to value and returns 
the corresponding item from the list out_range. If the value is not found, LOOKUPEX returns #VALUE.

The in_range can be in any order (as contrasted to LOOKUP). LOOKUPEX works with both numbers 
and text.

For example:

LOOKUPEX(3, {1, 5, 4, 3, 2}, {10, 20, 30, 40, 50}) returns 40

LOOKUPEX("blue", {"red", "blue", "yellow"}, {3, 2, 1}) returns 2

The LOOKUPEX function produces the same result as combining the INDEX and FINDEX functions in 
this format:

INDEX(FINDEX(x, in_range), out_range)
Other lookup functions 



ROW(ref)

The ROW function returns the row number of ref according to the following:
ref returns
cell row number
range number of topmost row in a 

range
omitted current row number

For example:
ROW(Z100) returns 100
ROW(D5..G10) returns 5
ROW(mycell) returns the row number of a 

named cell, mycell, or the 
topmost row within mycell if it is 
a range

ROW( ) returns 5 if the function is 
entered in any cell in row 5

Other lookup functions 



ROWS(array)

The ROW function returns the number of rows in a reference or array.

For example:

ROWS(F5..H10) returns 6

ROWS({1, 2; 9, 8}) returns 2

If you have created a named range called myarea, that refers to the range A1..D4, then: 

ROWS(myarea) returns 5

Other lookup functions 



Information functions 
You can use Ability’s built-in information functions to find out if a value is a number, text or error 
indicator, and how many blank cells or error indicators there are in a range.

Here is a complete list of information functions in Ability:

COUNTBLANK ISBLANK

ISERR ISERROR

ISEVEN ISNUMBER

ISODD ISREF

ISTEXT

See also:

Other functions 



COUNTBLANK(list)

The COUNTBLANK function counts the number of blank cells within a specified range.

For example, if A1 is blank, A2 contains a number, and A3 contains an error message, then the formula:

COUNTBLANK(A1..A3) 
returns 1.

Note that if a cell contains a formula that returns a blank value (for example CONCATENATE(" ")), then 
Ability does not count the cell itself as blank.

Other information functions 



ISBLANK(value)

The ISBLANK function returns TRUE if the value is blank or if the cell referred to is empty.

Note that if a cell contains a formula that returns a blank value (for example CONCATENATE(" ")), then 
Ability does not count the cell itself as blank. 

Other information functions 



ISERR(list)

The ISERR function checks the list and returns a count of the number of cells that contain #CIRC, 
#FUNC, #DIV0, #VALUE or #REF error indicators . The list can be cell addresses, ranges, and cell 
names. 

You can combine the IF(x, true, false) function and the ISERR function to check for errors and return an
error message if something is incorrect. For example, in a spreadsheet that runs from A1 to E20, you 
might use the following:

IF(ISERR(A1..E20), "A problem", "No problem")
Other information functions 



ISERROR(ref)

The ISERROR function returns TRUE if the field or cell referenced by ref contains any error message.

Other information functions 



ISEVEN(value)

The ISEVEN function returns TRUE if the value is an even number, FALSE for all other values. 

Other information functions 



ISNUMBER(value) 

The ISNUMBER function returns TRUE if the value is a number, FALSE for all other values. 

Other information functions 



ISODD(value)

The ISODD function returns TRUE if the value is an odd number, FALSE for all other values. 

Other information functions 



ISREF(value)

The ISREF function returns TRUE if the value is a reference.

For example:

ISREF(sales) 
returns TRUE when sales is the name of a range A1..A10.

Other information functions 



ISTEXT(value)

The ISTEXT function returns TRUE if the value is text. 

Other information functions 



Statistical functions
You can use the built-in statistical functions to perform statistical and other calculations. With these 
functions you can automatically find the average, the minimum and maximum, calculate the number of 
permutations, and perform other complex computations.

Here is a complete list of statistical functions in Ability:

AVEDEV AVERAGE

BINOMDIST COMB

CORREL COUNT

COUNTN COVAR

DEVSQ EXPONDIST

FISHER FISHERINV

FORECAST GAMMADIST

GAMMALN GEOMEAN

HARMEAN HYPGEOMDIST

INTERCEPT KURT

LARGE MAX

MEDIAN MIN

MODE NEGBINOMDIST

NORMDIST PEARSON

PERCENTILE PERCENTRANK

PERM POISSON

PROB QUARTILE

RANK RSQ

SKEW SLOPE

SMALL STANDARDIZE

STD STDEVP

STEYX VAR

VARP WAVG

WEIBULL

See also:

Other functions 



AVEDEV(list)

The AVEDEV function calculates the average deviations of numbers in a list from the mean value of the
list. The formula for average deviation is:

For example:

AVEDEV(2, 6, 9, 4, 5) 
returns 1.84, which is the average deviation from the mean of 5.2.

See also:

ABS(x) 

AVERAGE(list) or AVG(list) 

Other statistical functions



AVERAGE(list) or AVG(list)

The AVERAGE function calculates the unweighted average value of one or more values in a list. The 
formula used is:

SUM(list)/ n
where n is the number of values in the list. The list can include cell addresses, ranges, and cell names. 
This function can be abbreviated to AVG. 

For example:

AVERAGE(10, 20, 30)
returns 20.

Other statistical functions



BINOMDIST(number, trials, probability, cumulative)

The BINOMDIST function is used to calculate the binomial distribution. This is useful in situations 
where there is a fixed number of trials, the trials are independent of each other, the outcome of each 
trial is either success or failure, and the probability of success or failure is constant throughout the test. 

The arguments of the function represent the following:
number the number of occurrences of    success in the 

trials
trials the number of trials to be performed
probability the probability of success for a single trial
cumulative a logical value, which determines the form of the

function:
TRUE calculates the cumulative distribution 
function, which gives the probability that there 
are at most number successes
FALSE calculates the probability mass function, 
which gives the probability that there are exactly
number successes

For example, we want to know the probability of getting 12 heads from 20 flips of a coin. Each flip of the
coin can only give either heads or tails ("success" or "failure"), and the probability of heads on each flip 
is constant at 0.5. Therefore, setting cumulative to FALSE, the formula:

BINOMDIST(12, 20, 0.5, FALSE) 
returns the probability 0.12 that we will get exactly 12 successes from 20 trials. 

If cumulative is set to TRUE, then the formula:

BINOMDIST(12, 20, 0.5, TRUE) 
returns 0.87, that is the probability that we will get at most 12 heads (12 or less). 

Other statistical functions



COMB(n, m)

The COMB function calculates the number of combinations of n distinct things taken m at a time using 
the following formula:

COMB(n, m) = FACT(n) / (FACT(m) * FACT(n - m))
A combination is a selection of one or more things or events without regard to order. This can be 
contrasted with permutations, where order does matter.

For example, the chances of correctly selecting six numbers drawn from 49 in a lottery is given by:

COMB(49, 6)
which returns 13,983,816, that is, 1 chance in 13,983,816. 

Other statistical functions



CORREL(array1, array2)

The CORREL function calculates the correlation coefficient between two sets of data.

The function arguments should contain numbers or refer to ranges containing numbers, and should 
have matching numbers of data points. The correlation coefficient is a number between -1 and 1. The 
formula used is:

For example, the correlation coefficient between the height (array1) and weight (array2) of six people, 
can be calculated using the formula:

CORREL({1.52, 1.75, 1.96, 1.85, 1.55, 1.30}, {170, 167, 210, 182, 154, 100})
This returns a correlation coefficient of 0.918156, which indicates high correlation. 

Low correlation tends towards 0, as can be seen when array1 and array2 contain many data points 
filled with random numbers. 

Other statistical functions



COUNT(list)

The COUNT function counts the number of items of non-blank entries in list. The list can contain 
numbers, cell addresses, ranges, and cell names.

For example:

COUNT(A1..A10)
returns a count of the number of cells A1 through to A10 that are non-blank.

Note that if a cell contains a formula that returns a blank value (for example CONCATENATE(" ")), then 
Ability does not regard the cell itself as blank.

Other statistical functions



COUNTN(list)

The COUNTN function counts how many numbers there are in a list of arguments. The arguments can 
also be ranges.

For example:

COUNTN(A1..A10)
returns a count of the number of cells A1 through to A10 containing a number, a formula with a numeric 
result or a date. 

Other statistical functions



COVAR(array1, array2)

The COVAR function calculates the covariance between two sets of data. This is a measure of the 
average of the products of deviation for matching pairs from two arrays. 

The function arguments should contain numbers or refer to ranges containing numbers, and should 
have a matching number of data points. 

Other statistical functions



DEVSQ(list)

The DEVSQ function calculates the sum of squares of deviations from the mean of a list of numbers. 
The formula used is:

For example:

DEVSQ(9, 4, 8, 1, 14) 
returns 98.8.

See also:

AVERAGE(list) or AVG(list) 

Other statistical functions



EXPONDIST(x, lambda, cumulative)

The EXPONDIST function calculates the exponential distribution. x is the input value to the function; 
lambda is a distribution parameter; and cumulative is a logical value with the following effect:

FALSE the probability density function is 
calculated, using the equation:

TRUE the cumulative distribution function is 
calculated, using the equation:

For example

EXPONDIST(0.3, 9, TRUE) returns 0.932794

EXPONDIST(0.3, 9, FALSE) returns 0.604850

Other statistical functions



FISHER(x)

The FISHER function calculates the Fisher transformation at x. The formula used is:

f(x) = ½ LN((1 + x)/(1 - x))
for -1 < x < 1. 

The transformation can be used to convert a skewed distribution into a more normal one, provided 
there is some theoretical support.

For example: 

FISHER(0.85) 
returns 1.256153.

See also:

LN(x) 

Other statistical functions



FISHERINV(y)

The FISHERINV function calculates the inverse of the Fisher transformation, using the formula:

where y = FISHER(x).

For example

FISHER(1.256153) 
returns 0.85. 

Other statistical functions



FORECAST(x, array_y, array_x)

The FORECAST function returns a prediction of y for a given x after first performing a linear regression 
on the data points described by array_y and array_x. 

A linear regression produces a "best fit" line through the data points by minimizing the sum of the 
(squared horizontal) distances from each data point to the line. FORECAST then uses this line to 
predict a y value for the supplied x as follows:

which is the same as:

y = INTERCEPT(array_y, array_x) + SLOPE(array_y, array_x)*x
For example, suppose the following y-values were observed for the supplied x-values:

Y 4.7 6.0 11.2 10.6 8.2 7.3 15.8 11.7
X 1 2 3 4 5 6 7 8

A linear regression through these points would look like this:

You could use FORECAST to predict the y value at x = 10 using the following formula:
FORECAST(10, {4.7, 6, 11.2, 10.6, 8.2, 7.3, 15.8, 11.7}, {1, 2, 3, 4, 5, 6, 7, 8})

which returns the value 14.9.

See also:

INTERCEPT(array_y, array_x) 

SLOPE(array_x, array_y) 

STEYX(array_y, array_x) 

Other statistical functions



GAMMADIST(x, alpha, beta)

The GAMMADIST function calculates the gamma distribution. It is used when working with variables 
that may have a skewed distribution. x is the value at which the function is to be evaluated; alpha and 
beta are parameters to the function. The formula for the gamma distribution is:

and for the standard gamma distribution, that is when b = 1, is:

For example:

GAMMADIST(15, 7, 4) 
returns 0.022709. 

Other statistical functions



GAMMALN(x)

The GAMMALN function calculates the natural logarithm of the gamma function, G(x).

The formula used is:

GAMMALN = LN(G(x)).
Other statistical functions



GEOMEAN(list)

The GEOMEAN function calculates the geometric mean of a list of numbers. 

Each number y of the list should be > 0. 

The formula for the geometric mean is:

For example:

GEOMEAN(3, 8, 7) 
returns 5.5178, that is the 3rd or cubed root of 3*8*7. 

Other statistical functions



HARMEAN(list)

The HARMEAN function calculates the harmonic mean of a list of numbers. This is the reciprocal of 
the arithmetic mean of reciprocals. 

Each number x of the list should be > 0. The harmonic mean is always less than the geometric mean, 
which is always less than the arithmetic mean, for the list of numbers. 

The formula for the harmonic mean is:

where n is the size of the list and x1 ,x2 …. xn    are the numbers in the list.

For example

HARMEAN(10, 5, 4, 7, 8) 
returns 6.113537, given by 5/(1/10 + 1/5 + 1/4 + 1/7 + 1/8). 

Other statistical functions



HYPGEOMDIST(sample, n_sample, population, n_population)

The HYPGEOMDIST function calculates the hypergeometric distribution. 

This is the measure of the probability of a given number of sample "successes" from a finite population,
without replacement of samples and given the sample size and the number of population "successes". 
Each sample is defined as either a "success" or a "failure"; for example, when flipping a coin, heads 
might be a success and a tails a failure.

The arguments of the function represent the following:
sample the number of successes in the sample, 

for which we seek the probability
n_sample the size of the sample
population the number of    successes in the 

population
n_population the size of the population

For example, a lucky dip has been organized, with 40 items in total. 35 of these are worthless trinkets; 
5 are diamonds. We wish to know the probability of getting exactly 2 diamonds from a selection of 4 
items. 

Each diamond counts as a success. There are 40 items in total: this is the n_population. The size of 
the sample is 4: this is the n_sample. The number of    successes, that is to say, diamonds, in the total 
population is 5: this is population. The number of successes in the sample, for which we seek the 
probability, is 2: this is the sample.

Applying the formula:

HYPGEOMDIST(2, 4, 5, 40) 
returns 0.065106 as the probability.

Other statistical functions



INTERCEPT(array_y, array_x)

The INTERCEPT function returns the point where a "best fit" line meets the y-axis. This is calculated by
applying a linear regression on the data points in array_x (the independent or controlled variable) and 
array_y (the dependent variable).

The formula used for intercept is:

which is the same as:

AVG(array_y) - SLOPE(array_x, array_y) * AVG(array_x)
For example, suppose the following y-values were observed for the supplied x-values:

Y 4.7 6.0 11.2 10.6 8.2 7.3 15.8 11.7
X 1 2 3 4 5 6 7 8

A linear regression through these points would look like this:

You calculate where the line crosses the y-axis using:
INTERCEPT({4.7, 6, 11.2, 10.6, 8.2, 7.3, 15.8, 11.7}, {1, 2, 3, 4, 5, 6, 7, 8})

which returns 4.942857.

See also:

FORECAST(x, array_y, array_x) 

SLOPE(array_x, array_y) 

STEYX(array_y, array_x) 

Other statistical functions



KURT(list)

The KURT function calculates the kurtosis of a list of numbers. 

Kurtosis is used to measure how much data is massed in the center of a distribution compared to the 
normal distribution - a relatively flat distribution will have negative kurtosis and a pointed one a positive 
kurtosis. KURT needs at least 4 numbers in the list.

Other statistical functions



LARGE(k, list)

The LARGE function calculates the k-th largest number in a list of numbers. k should be greater than 0
and not greater than the number of numbers in the list.

For example

LARGE(3, 9, 234, 4, 56, 888) 
returns 56, the third largest number. 

Other statistical functions



MAX(list)

The MAX function returns the maximum (largest) value in the list. The list can include numbers, cell 
addresses, ranges, and cell names.

For example:

MAX(1, 2, -16, 8)
returns largest number in the list, which is 8. 

Other statistical functions



MEDIAN(list)

The MEDIAN function calculates the median of a list of numbers. The median is the middle value in a 
list of numbers, after the list has been arranged in ascending order. MEDIAN both orders the list and 
finds the middle value, so you can enter the list values in any order you like. If the list contains an even 
number of numbers, the median is calculated as the average of the two middle numbers. 

For example:

MEDIAN(3, 5 ,17, 34, 98) 
returns 17.

MEDIAN(3, 5, 17, 26, 34, 98) 
returns 21.5, which is the average of the two middle numbers 17 and 26.

MEDIAN will return an error message if any of the list values are non-numeric, though it will ignore non-
numeric values if calling on a range. 

Other statistical functions



MIN(list)

The MIN function returns the minimum (smallest) value in the list. The list can include numbers, cell 
addresses, ranges, and cell names.

For example:

MIN(1, 2, -16, 8)
Ability displays the smallest number, which is -16. 

Other statistical functions



MODE(list)

The MODE function calculates the mode of a list of numbers. The mode is the most frequently 
occurring number in the list.

If all the numbers occur with equal frequency then an error message is returned. However, if a subset 
of the numbers occur with greater frequency than the others, then the first number in the subset is 
returned.

For example:

MODE(4, 5, 9, 2, 9) returns 9

MODE(4, 5, 2, 9, 2, 9) returns 2

MODE(1, 2, 3, 4, 5) returns an error message

MODE will return an error message if any of the list values or values held in a range are non-numeric. 

Other statistical functions



NEGBINOMDIST(number_f, number_s, probability_s)

The NEGBINOMDIST function calculates the negative binomial distribution. 

This is a measure of the probability that a certain number of failures will occur before the nth success, 
given that the probability of success is constant. It is used in situations where the number of trials is 
variable and each trial is independent of the others, but the number of successes is fixed. 

The function arguments are:
number_f the number of failures
number_s the number of successes
probability_s the probability of a success

For example, we want to know the probability of getting exactly 10 tails ("failures") before we get 12 
heads ("successes") in a coin-tossing experiment. The probability of a success is constant at 0.5. The 
formula:

NEGBINOMDIST(10, 12, 0.5) 
returns 0.084094 as the probability. 

Other statistical functions



NORMDIST(x, mean, stdev)

The NORMDIST function calculates the normal distribution for a given mean and standard deviation 
(stdev), where x is the value for which you want to know the distribution. The formula used is:

NORMDIST calculates the probability mass function.

For example:

NORMDIST(3, 2, 1)
returns 0.242, which is the probability of the event x = 3, given a normal distribution with a mean of 2 
and standard deviation 1. 

Other statistical functions



PEARSON(array_x, array_y)

The PEARSON function calculates the Pearson product moment correlation coefficient. This is a 
measure, between -1 and 1 inclusive, of the extent of the relationship between two sets of data. 

array_x is the set of independent and array_y is the set of dependent numbers. The arrays must have 
a matching number of values. PEARSON is calculated using the formula:

where r is the correlation coefficient of the linear regression line running through the data points 
described by array_x and array_y.

For example:

PEARSON({10, 7, 5, 3, 2}, {12, 8, 13, 4, 1}) 
returns 0.756437. 

Other statistical functions



PERCENTILE(k, array)

The PERCENTILE function calculates the k-th percentile of the numbers in an array or range. k is a 
number from 0 to 1 inclusive (or 0% to 100%). 

The k-th percentile P of a range of numbers is a number such that at least a proportion k of the range of
numbers is smaller than or equal to P, and also at least a proportion (1 - k) of those numbers is larger 
than or equal to P. 

For example

PERCENTILE(25%, {0, 1, 2, 3, 4}) 
returns 1.

PERCENTILE(25%, {1, 2, 3, 4}) 
returns 1.75. 

Other statistical functions



PERCENTRANK(x, array)

The PERCENTRANK function calculates the percentage rank of a number in a set of numbers. 

The percent rank of a value is a measure of its standing in relation to a set of values. It is always a 
number from 0 to 1 inclusive. x is the value for which the percentage rank is sought in comparison to 
the set of numbers in an array or range. 

For example

PERCENTRANK(2, {0, 1, 2, 3, 4}) 
returns 0.5

PERCENTRANK(2, {1, 2, 3, 4}) 
returns 0.333333. 

Other statistical functions



PERM(n, m)

The PERM function calculates the number of permutations of n distinct things taken m at a time, using 
the following formula:

PERM = FACT(n) / FACT(n - m)
For example, to get the number of permutations of the three letters a, b and c, taking 2 at a time, use 
the formula:

PERM(3, 2)
which returns 6. The six permutations are ab, ac, bc, ba, ca, cb. 

A more complex example is a coded telegram where each word is 5 letters in length. The number of 
possible different words, where each word contains a letter no more than once, is given by the formula:

PERM(26, 5)
which returns 7893600.

See also:

COMB(n, m) 

FACT(n) 

Other statistical functions



POISSON(x, mean, cumulative)

The POISSON function calculates the Poisson distribution. This is useful for predicting the probability of
a number of events over a specific measure, for example time, length or area.

The arguments of the function represent the following:
x the number of events, for which we seek the 

probability
mean the known average rate of events
cumulative a logical value, which determines the form of 

the function:
TRUE calculates the cumulative Poisson 
probability, which gives the probability that 
the number of events will be between 0 and 
x inclusive.
FALSE calculates the Poisson probability 
mass function, which gives the probability 
that the number of    events will be exactly x.

For example, if 7 cars per minute is the average traffic rate on a particular road, and their arrival is 
entirely random, we can calculate the probability of there being exactly 4 cars in a minute by using the 
formula:

POISSON(4, 7, FALSE)
which returns a probability of 0.091226. 

The probability that there will be between 0 and 4 cars per minute inclusive is given by:

POISSON(4, 7, TRUE)
that is 0.172992. 

Other statistical functions



PROB(x_range, prob_range, lower_limit, upper_limit)

The PROB function calculates the probability that numbers in a range are between two limits. 

x_range is a range of numbers with which there is associated a range of corresponding probabilities in 
prob_range. 

lower_limit and upper_limit are the limits of the range of numbers for which we want to know the 
probability. If upper_limit is omitted then it becomes equal to lower_limit, and PROB calculates the 
probability of just the one number. 

Note that the values in prob_range must total 1, and that this range and x_range must contain the 
same number of values.

For example, if {2, 4, 6, 8, 10} is a list of all possible outcomes of an experiment, with corresponding 
probabilities {0.3, 0.1, 0.1, 0.2, 0.3}, then the probability of an event being between 4 and 8 inclusive is 
given by the formula:

PROB({2,4,6,8,10}, {0.3, 0.1, 0.1, 0.2, 0.3}, 4, 8)
which returns 0.4. 

Other statistical functions



QUARTILE(quart, array)

The QUARTILE function calculates the quartile of an array or range of numbers. 

quart is either 0, 1, 2, 3 or 4, and represents either the zero (minimum), 25th, 50th (median), 75th or 
100th (maximum) percentile respectively.

For example, the 3rd quartile of a data set {12, 9, 11, 7, 4, 15} is given using the formula:

QUARTILE(3, {12, 9, 11, 7, 4, 15})
which returns 11.75. This is equivalent to using the PERCENTILE function:

PERCENTILE(75%, {12, 9, 11, 7, 4, 15})
Note that using quart = 0, 2, or 4 has the same effect as using the functions MIN, MEDIAN or MAX 
respectively. 

Other statistical functions



RANK(number, ref, order)

The RANK function calculates the rank of a number in a list of numbers. The rank of a number is its 
size relative to the other numbers in the list. 

The arguments for the function are:

number the number in the list that we want to rank.

ref the reference for the list of numbers, usually 
an array, range or range name.

order determines whether the rank is to be 
calculated against a list sorted in descending 
or ascending order: setting order at 0 (or 
omitting it) sorts in descending order, at 1 or 
>1 sorts in ascending order.

For example:

RANK(12, {6, 8, 2, 4, 14, 12, 10}, 0) 
returns 2; whereas:

RANK(12, {6, 8, 2, 4, 14, 12, 10}, 1) 
returns 6.

Other statistical functions



RSQ(array_x, array_y)

The RSQ function calculates the square of the Pearson product moment correlation coefficient (See 
PEARSON ). The formula is equivalent to:

SQR(PEARSON(array_x, array_y)
Other statistical functions



SKEW(list)

The SKEW function calculates the skewness of a distribution given by list. 
Skewness is a measure of the asymmetery of a distribution round its mean. A distribution with positive 
skewness has an asymmetric tail that stretches towards more positive values. A distribution with 
negative skewness has an asymmetric tail that stretches towards more negative values. 

SKEW works with a list of numbers, a range or an array. An error message is returned if there are less 
than 3 values.

For example:

SKEW(16, 17, 19, 12, 11, 10, 9) 
returns 0.367654. 

Other statistical functions



SLOPE(array_y, array_x)

The SLOPE function calculates the slope of the linear regression line through the data points described
by array_x (the independent or controlled variable) and array_y (the dependent variable).

The slope is the vertical distance between any two data points divided by the horizontal distance 
between the same two data points. It is a measure of the rate of change of the regression line, and is 
given by the formula:

where b is the slope of the regression line.

The x- and y-arrays or ranges must have the same number of data points.

For example, suppose the following y-values were observed for the supplied x-values:
Y 4.7 6.0 11.2 10.6 8.2 7.3 15.8 11.7
X 1 2 3 4 5 6 7 8

A linear regression through these points would look like this:

You calculate the slope of the line using:
SLOPE({4.7, 6, 11.2, 10.6, 8.2, 7.3, 15.8, 11.7}, {1, 2, 3, 4, 5, 6, 7, 8})

which returns 0.9988.

See also:

FORECAST(x, array_y, array_x) 

INTERCEPT(array_y, array_x) 

STEYX(array_y, array_x) 

Other statistical functions



SMALL(k, list)

The SMALL function calculates the k-th smallest value in a set of numbers in list.
For example:

SMALL(2, {19, 7, 1, 18, 10}) 
returns 7. 

Other statistical functions



STANDARDIZE(x, mean, stdev)

The STANDARDIZE function calculates a nomalized value for x, by subtracting the mean and dividing 
the result by the standard deviation (stdev) of a distribution. This allows direct comparison to the 
standard normal distribution.

For example:

STANDARDIZE(30, 20, 1.8) 
returns 5.56, that is (30-20)/1.8.

Other statistical functions



STD(list) or STDEV(list)

The STD or STDEV function estimates the standard deviation of a population based on a random 
sample of that population as supplied by list. 
The standard deviation is a measure of the dispersal of data from the mean value and is defined as the 
square root of the variance (see the VAR function). 

The formula used by STD is:

SQRT(VAR(list))
STD assumes that list is a sample of the population, so use STDEVP if you wish to work with a whole 
population.

For example, if 5 people are chosen at random and measured for height, from a company with 40 
employees, the formula:

STD(1.85, 1.9, 1.8, 1.75, 1.7) 
returns 0.079 as the estimated standard deviation for the population. To get the standard deviation 
based on all 40 employees use STDEVP.

Other statistical functions



STDEVP(list)

The STDEVP function calculates the standard deviation of a population based on the whole of the 
population as supplied by list. 
The standard deviation is a measure of the dispersal of data from the mean value. The formula used by
STDEVP is:

SQRT(VARP(list))
STDEVP assumes that its arguments are the whole of a population, so use STD if you wish to estimate
the standard deviation based on a sample.

For example, if you wish to calculate the standard deviation of the times, in seconds, for the members 
of a 4 x 400m running team, use the formula

STDEVP(55, 57, 56, 59)
which returns 1.479 seconds. 

Other statistical functions



STEYX(array_y, array_x)

The STEYX function calculates the standard error associated with a linear regression on the data 
points described by array_y (the dependent variable) and array_x (the independent or controlled 
variable) according to the formula:

Standard error is a measure of the amount of error associated with a prediction of y given x.

For example, suppose the following y-values were observed for the supplied x-values:
Y 4.7 6.0 11.2 10.6 8.2 7.3 15.8 11.7
X 1 2 3 4 5 6 7 8

A linear regression through these points would look like this:

Suppose you want to forecast y for x = 10 and supply a standard error with this forecast. The standard 
error would be calculated using:

STEYX({4.7, 6, 11.2, 10.6, 8.2, 7.3, 15.8, 11.7}, {1, 2, 3, 4, 5, 6, 7, 8})
which returns 2.84.

See also:

FORECAST(x, array_y, array_x) 

INTERCEPT(array_y, array_x) 

SLOPE(array_x, array_y) 

Other statistical functions



VAR(list)

The VAR function calculates the sample variance of the list. The list can contain numbers, cell 
addresses, ranges, and cell names. 

VAR is calculated according to the formula:

See also:

AVERAGE(list) or AVG(list) 

Other statistical functions



VARP(list)

The VARP function calculates the variance of a list on the assumption that list contains the whole 
population.

The variance is a measure of the spread of data from the mean, and is calculated using the formula:

VARP assumes that list is the whole of a population, so use VAR if you wish to estimate the variance 
based on a sample.

For example:

VARP(9, 6, 5, 1, 10, 9, 3) 
returns 9.836735. 

See also:

AVERAGE(list) or AVG(list) 

Other statistical functions



WAVG(array_x, array_y)

The WAVG function calculates the weighted average of the values in array_x, with corresponding 
weights taken from array_y. The arguments are either ranges or arrays.

WAVG is calculated using the formula:

For example:

WAVG({1, 2, 3, 4, 5}, {0.3, 0.3, 0.1, 0.7, 0.8}) 
returns 3.64. 

Other statistical functions



WEIBULL(x, alpha, beta, cumulative)

The WEIBULL function calculates the Weibull distribution. This is often used in reliability analysis. 

The arguments of the function represent the following:
x the value at which to evaluate the function
alpha a parameter to the distribution
beta a parameter to the distribution 
cumulative a logical value, which determines the form of the

function: 
TRUE calculates the Weibull cumulative 
distribution function, which uses the formula:
F(x; a, b) = 1 - EXP(-(x/b)^a)
FALSE calculates the Weibull probability density 
function, which uses the formula:
f(x; a, b) = ( a / b^a ) x^(a - 1) EXP(-(x/b)^a)

Other statistical functions



Text functions
You can use Ability’s built-in text functions to manipulate, transform and compare text. 

Here is a complete list of text functions in Ability:

CHAR CLEAN

CODE CONCATENATE

DOLLAR EXACT

FINDTEXT FIXED

LEFT LEN

LOWER MID

PROPER REPLACE

REPT RIGHT

SEARCHTEXT SUBSTITUTE

T TRIM

UPPER VALUE

See also:

Other functions 



CHAR(number)

The CHAR function returns the character specified by the code number. This is used to convert codes 
from other types of computers to characters. number is from 1 to 255, each
number representing an ASCII character.

For example:

CHAR(37) returns "%"

CHAR(57) returns "9"

Other text functions



CLEAN(text) 

The CLEAN function removes all non-printable characters from text. These are characters that are not 
normally displayed by your operating system.

For example:

CLEAN (CONCATENATE (CHAR (7), "Hello")) 
returns "Hello".

Other text functions



CODE(text)

The CODE function returns the numeric code for the first character in a text string. The code 
corresponds to a character in ASCII.

For example:

CODE("W")
and

CODE("Wittgenstein") 
both return 87. 

Other text functions



CONCAT(text_list)

The CONCAT function joins several text items into one text item. text_list can be composed of text, 
numbers or single-cell references.

CONCAT is an abbreviation for the CONCATENATE function.

Other text functions



CONCATENATE(text_list)

The CONCATENATE function joins several text items into one text item. text_list can be composed of 
text, numbers or single-cell references.

For example, if the cell A1 contains the number 5, the formula:

CONCATENATE("Petrol is $", A1, " today") 
returns "Petrol is $5 today".

An abbreviated version of this function is CONCAT .

Other text functions



DOLLAR(number, precision)

The DOLLAR function converts a number to text, using a currency format. number is the number to be 
converted and formatted. 

precision specifies how the number is to be rounded. For example, 2 will round the number to 2 
decimal places, while -2 will round the number to 2 places to the left of the point. If precision is omitted 
the default currency precision is taken from Windows settings.

For example:

DOLLAR(234.19999, 2) returns "$234.20"

DOLLAR(234.19999, -2) returns "$200"

Other text functions



EXACT(text1, text2)

The EXACT function checks to see if two text values are identical. TRUE is returned if they are, FALSE 
if not.

EXACT is case sensitive.

For example, suppose a field myfield contains the text "Happy today", the following results are 
obtained:

EXACT("Happy today", myfield) TRUE

EXACT("happy today", myfield) FALSE

EXACT("Happy", myfield) FALSE

Other text functions



FINDTEXT(find_text, within_text, start_num)

The FINDTEXT function finds one text string within another and returns the position of the character at 
which the two text strings first match. 

FINDTEXT is case-sensitive and does not allow wildcard characters (This differs from SEARCHTEXT ).

find_text is the text you wish to find.

within_text is the object text.

start_num is the position of the character in within_text from which you want to begin the search. 

If find_text is "" (empty) the character at start_num is returned. If start_num is omitted it is assumed 
to be 1. The #VALUE error message is returned if FINDTEXT fails to find a match.

For example:

FINDTEXT("br", "abracadabra",5) returns 9

FINDTEXT("r", "Robertson", 1) returns 5

FINDTEXT("R", "Robertson", 1) returns 1

FINDTEXT(" ", "Mr Smith") returns 3

Other text functions



FIXED(number, precision, commas)

The FIXED function formats a number as text with a fixed number of decimals. 

number is the number to be rounded and formatted. 

precision specifies how the number is to be rounded. For instance, 2 will round the number to 2 
decimal places, while -2 will round the number to 2 places to the left of the point. 

commas is a logical value which determines whether the number is to have commas (TRUE) or not 
(FALSE or omitted).

For example:

FIXED(1234.19999, 2, TRUE) returns "1,234.20"

FIXED(1234.19999, -2, FALSE) returns "1200"

Other text functions



LEFT(text, num_chars)

The LEFT function returns the left-most characters from a text string. 

num_chars is the number of characters from the left of the text string. If this is omitted, it is assumed to
be 1; if it is greater than the number of characters in text, then LEFT will return the whole text string.

For example:

LEFT("WC1 5NH", 3) 
returns "WC1". 

Other text functions



LEN(text)

The LEN function returns the number of characters in a text string. Spaces are counted as characters.

For example:

LEN("The Queen of England") 
returns 20. 

Other text functions



LOWER(text)

The LOWER function converts text to lower case.

For example:

LOWER("SALES REPORT") 
returns "sales report". 

Other text functions



MID(text, start_num, num_chars)

The MID function returns a specific number of characters from a text string, starting at a specified 
position. 

If start_num is greater than the length of text, MID returns "" (empty string). 

If num_chars is greater than the number of characters remaining after start_num, or if it is omitted, 
MID returns the remaining characters.

For example:

MID("The discount is 10% in March", 24, 10) 
returns "March". 

Other text functions



PROPER(text)

The PROPER function capitalizes the first letter in each word of a text value. A word is any continuous 
string of letters which follows a character other than a letter. Letters that are not capitalized by 
PROPER are reduced to lower case.

For example:

PROPER("no smoking") returns "No Smoking"

PROPER("NO SMOKING") returns "No Smoking"

PROPER("Leonardo’s masterPiece") returns "Leonardo’S Masterpiece"

Other text functions



REPLACE(old_text, start_num, num_chars, new_text)

The REPLACE function replaces characters within text. This enables you to replace a specified text 
string with another text string. 

old_text contains the string which is to be replaced.

start_num gives the number of the character at which the replacement is to begin.

num_chars is the number of characters to be replaced.

new_text is the text that will replace the relevant string in old_text.
For example:

REPLACE("November", 1, 3, "Dec") returns "December"

REPLACE("Mr Bill Clinton", 1, 7, "President") returns "President Clinton"

Other text functions



REPT(text, number_times)

The REPT function repeats text a given number of times.

For example

REPT("x", 5) 
returns "xxxxx". 

Other text functions



RIGHT(text, num_chars)

The RIGHT function returns the right-most characters from a text string. 

num_chars is the number of characters from the right of the text string. If this is omitted it is assumed 
to be 1. If it is greater than the number of characters in text then RIGHT will return the whole text string.

For example:

RIGHT("New York", 4) returns "York"

RIGHT("Washington", 20) returns "Washington"

Other text functions



SEARCHTEXT(find_text, within_text, start_num)

The SEARCHTEXT function finds one text string within another and returns the position of the 
character at which the two text strings first match. 

SEARCHTEXT is case-insensitive and allows wildcard characters (* or ?) (This differs from 
FINDTEXT). If you wish to search for the characters * or ? themselves, use ~* or ~?.

find_text is the text you wish to find. If find_text is "" (empty) the position of the character at 
start_num is returned.

within_text is the object text.

start_num is the position of the character in within_text from which you want to begin the search. If 
start_num is omitted it is assumed to be 1. 

The #VALUE error message is returned if SEARCHTEXT fails to find a match. 

For example:

=SEARCHTEXT("br", "AbraCADaBRa", 5) returns 9

=SEARCHTEXT("r", "Robertson", 1) returns 1

=SEARCHTEXT("R*t", "Robertson", 1) returns 1

=SEARCHTEXT("", "Mr Smith", 4) returns 4

=SEARCHTEXT("~*", "XXXX*XX") returns 5

Other text functions



SUBSTITUTE(text, old_text, new_text, instance_num)

The SUBSTITUTE function substitutes new text for old text in a text string. This enables you to replace 
a specified text string with another text string (Use REPLACE if you wish to replace text at a specific 
location in a text string).

text contains the text string that is to be replaced.

old_text is the text that is to be replaced.

new_text is the text that is to be substituted for old_text.
instance_num specifies which instance of old_text is to be replaced (if this is omitted all instances of 
old_text are replaced).

For example:

SUBSTITUTE("Happy New Year", "New Year", "Birthday")
returns "Happy Birthday"

SUBSTITUTE("Apri1/1/1997", "9", "8", 2)
returns "April/1/1987"

SUBSTITUTE(SUBSTITUTE("(x + y)/(x - y)", "(", "["), ")", "]")
returns "[x + y]/[x - y]" 

Other text functions



T(value)

The T function returns its argument if it is text, otherwise it converts a value to text. This is not a 
function that will often be needed, since Ability automatically converts most values as necessary in 
formulas.

For example:

T("FALSE") returns "FALSE"

T(FALSE) returns "FALSE"

T(1000) returns "1000"

This function is the reverse of VALUE . 

Other text functions



TRIM(text)

The TRIM function removes spaces from text, except single spaces between words.

For example

TRIM("Dear Mr                Clinton") 
returns "Dear Mr Clinton". 

Other text functions



UPPER(text)

The UPPER function converts text to uppercase.

For example:

UPPER("hello") 
returns "HELLO". 

Other text functions



VALUE(text)

The VALUE function converts a text argument to a number.

For example:

VALUE("222") 
returns 222.

This function is the reverse of T(value).

Other text functions



Document functions
You can use Ability’s built-in document functions to display information about the document in which 
you are currently working. 

This is useful if you want a printout to contain document information within the document itself. 

The document functions directly access the information in Summary and Statistics contained in 
Properties under the File menu.

Here is a complete list of document functions in Ability:
Function Operation
AUTHOR returns author from Summary Information
COMMENTS returns comments from Summary Information
CREATEDATE returns the date document was created from Statistics
EDITTIME returns the total document editing time from Statistics
FILENAME returns the document name and location
FILESIZE returns the size on the disk of the document
KEYWORDS returns keywords from Summary Information
MERGECOUNT returns the total number of merge records in the document
MERGEREC returns the number of the current merge record
NUMCHARS returns the number of characters in the document from 

Statistics (only applies to Write)
NUMPAGES returns the number of pages in the document from 

Statistics
NUMWORDS returns the number of words in the document from 

Statistics (only applies to Write)
PAGE returns the number of the current page in the document
PRINTDATE returns the date the document was last printed from 

Statistics
REVNUM returns the number of times the document has been 

saved from Statistics
SAVEDATE returns the date the document was last saved from 

Statistics
SUBJECT returns the subject of the document from Summary 

Information
TITLE returns the title of the document from Summary 

Information

See also:

Other functions 



AUTHOR()

Returns the authors name. This is taken directly from the Summary page under the File/Properties 
menu.

Other document function



COMMENTS()

Returns document comments. This is taken directly from the Summary page under the File/Properties 
menu.

Other document function



CREATEDATE()

Returns the date the document was created. This is taken directly from the Statistics page under the 
File/Properties menu.

Other document function



EDITTIME()

Returns the total document editing time. This is taken directly from the Statistics page under the 
File/Properties menu.

Other document function



FILENAME()

Returns the document name and location.

Other document function



FILESIZE()

Returns the number of bytes the document occupies on disk.

Other document function



KEYWORDS()

Returns the document keywords. This is taken directly from the Summary page under the 
File/Properties menu.

Other document function



MERGECOUNT()

Returns the total number of merge records in the document. 

If mail merge is enabled, this is the total number of records in the current mail merge. (A tick will show 
next to Mail merge on the Tools menu). If mail merge is not enabled, returns #VALUE.

Other document function



MERGEREC()

Returns the number of the current merge record, providing mail merge is enabled. (A tick will show next
to Mail merge on the Tools menu).

If mail merge is not enabled, returns #VALUE.

Other document function



NUMCHARS()

Returns the total number of characters in current document. This is taken directly from the Statistics 
page under the File/Properties menu.

Other document function



NUMPAGES()

Returns the number of pages in the current document. This is taken directly from the Statistics page 
under the File/Properties menu.

Other document function



NUMWORDS()

Returns the number of words in the current document. This is taken directly from the Statistics page 
under the File/Properties menu.

Other document function



PAGE()

Returns the number of the current page in the document.

Other document function



PRINTDATE()

Returns the date the document was last printed. This is taken directly from the Statistics page under 
the File/Properties menu.

Other document function



REVNUM()

Returns the number of times the document has been saved. This is taken directly from the Statistics 
page under the File/Properties menu.

Other document function



SAVEDATE()

Returns the date the document was last saved. This is taken directly from the Statistics page under the 
File/Properties menu.

Other document function



SUBJECT()

Returns the subject of the document. This is taken directly from the Summary page under the 
File/Properties menu.

Other document function



TITLE()

Returns the title of the current document. This is taken directly from the Summary page under the 
File/Properties menu.

Other document function



Remote functions
You can use Ability’s built-in remote functions to work with information from other documents. These 
allow you to display, manipulate and edit external information in the current document. The remote 
functions are useful when you need to access external database, spreadsheet or write information from
a current spreadsheet or write document. Most of the remote functions call on a database object. This 
is a table, query, relation or SQL statement.

Here is a complete list of remote functions in Ability:

DBFIELDCOUNT DBFIELDNAME

DBFILTER DBFILTERSORT

DBGET DBQUERYCOUNT

DBQUERYNAME DBRELATIONCOUNT

DBRELATIONNAME DBSORT

DBSQL DBSQLFILTER

DBSQLSORT DBSQLFILTERSORT

DBTABLECOUNT DBTABLENAME

REMOTE SSGET 

WPGET 

See also:

Other functions 



DBFIELDCOUNT(database, source)

The DBFIELDCOUNT function returns the number of fields in a database object. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

source is the name of the database object, which can be a table, query, relation or SQL statement. 

For example, if there is a database called wineshop.adb in a folder c:\ability\samples, which contains a 
table called Contacts, then:

DBFIELDCOUNT("c:\ability\samples\wineshop.adb", "Contacts") 
returns the number of fields.

Other remote functions



DBFIELDNAME(database, source, index)

The DBFIELDNAME function returns the name of a field in a database object. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

source is the name of the database object, which can be a table, query, relation or SQL statement. 

index is a field number. 

The function arguments are case insensitive.

For example, if there is a database called wineshop.adb in a folder c:\ability\samples, which contains a 
table called Contacts, then:

DBFIELDNAME("c:\ability\samples\wineshop.adb", "Contacts", 1) 
returns the name of the first field in the table. 

Other remote functions



DBFILTER(database, table, filter, field_name, rec_num)

The DBFILTER function returns the contents of a field from a database table after a filter has been 
applied according to the specified, named filter. 

It requires that the filter has already been defined in Database and can be contrasted with 
DBSQLFILTER which is similar in functionality but allows you to define simple filters "on-the-fly".

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

filter is the named filter that has been applied to the table or relation.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. A filter called Red has been defined that filters out all wines other than red. The table 
contains the name of each wine in a Title field and the price in a field called Price as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBFILTER can be used to obtain the following results:

DBFILTER("c:\ability\samples\wineshop.adb", "products", "red") 
returns "Château Haut du Puy" as this is the first column and row off the filtered table.

DBFILTER("c:\ability\samples\wineshop.adb", "products", "red", 1, 3)
returns "Le Chambertin", as this is the value from 3rd row and 1st column.

DBFILTER("c:\ability\samples\wineshop.adb", "products", "red", "price", 2)
returns 27, the 2nd record of the Price column.

AVG(DBFILTER("c:\ability\samples\wineshop.adb", "products", "red", "price"))
returns 31.375 - the average price of red wine.

ROWS(DBFILTER("c:\ability\samples\wineshop.adb", "products", "red"))
returns 12, the total number of records in the filtered table. 

Other remote functions



DBFILTERSORT(database, table, filter, sort, field_name, rec_num)

The DBFILTERSORT function returns the contents of a field from a database table after a filter and sort
order has been applied according to the specified, named filter and sort order.

It requires that the filter and sort order has already been defined in Database and can be contrasted 
with DBSQLFILTERSORT which is similar in functionality but allows you to define simple filters and sort
orders "on-the-fly".

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

filter is the named filter that has been applied to the table or relation.

sort is the named sort order that has been applied to the table or relation.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. A filter called Red has been defined that filters out all wines other than red. The table 
contains the name of each wine in a Title field and the price in a field called Price as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

A sort order called ByPrice has been created that sorts in ascending order the price field. 

DBFILTERSORT can be used to obtain the following results:

DBFILTERSORT("c:\ability\samples\wineshop.adb", "products", "red", "byprice") 
returns "Château Haut du Puy" as this is the first column and row off the filtered table when sorted by 
price.

DBFILTERSORT("c:\ability\samples\wineshop.adb", "products", "red", "byprice",    1, 3)
returns " Chambolle-Musigny", as this is the 3rd cheapest wine.

DBFILTERSORT("c:\ability\samples\wineshop.adb", "products", "red", "byprice", "price", 2)
returns the price of the second cheapest wine, 27. 

Other remote functions



DBGET(database, source, field_name, rec_num)

The DBGET function returns the contents of a field in a database.

database is the name of a database and must include the full path if not in the same directory as the 
open document.

source is the name of the database object, which can be a table, query, relation or SQL statement.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a table called 
Products, which details a list of wines. The table contains three fields as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBGET can be used in the following ways:

DBGET("c:\ability\samples\wineshop.adb", "products", 1, 1)
returns "Château Haut du Puy", the first field from the first record.

DBGET("c:\ability\samples\wineshop.adb", "products", "price", 3)
returns 53.00, the Price field from record three.

SUM(DBGET("c:\ability\samples\wineshop.adb", "products", "price"))
returns 125.50, the sum of the Price field. 

See also:

Linking to Write 

Linking to Spreadsheet 

Other remote functions



DBQUERYCOUNT(database)

The DBQUERYCOUNT function returns the number of queries in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a three 
queries:

DBQUERYCOUNT("c:\ability\samples\wineshop.adb")
will return 3. 

Other remote functions



DBQUERYNAME(database, index)

The DBQUERYNAME function returns the name of a specified query in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

index is the query number, starting at 1. 

For example, you know a database called wineshop, located in a folder c:\ability\samples, contains at 
least one query:

DBQUERYNAME("c:\ability\samples\wineshop.adb", 1) 
returns the name of the first query in the database.

Suppose you enter "c:\ability\samples\wineshop.adb" into a cell in a spreadsheet, say A1. Then the 
following:

DBQUERYNAME(A1, DBQUERYCOUNT(A1))
returns the name of the last query. 

See also:

DBQUERYCOUNT(database) 

Other remote functions



DBRELATIONCOUNT(database)

The DBRELATIONCOUNT function returns the number of relations in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a four 
relations:

DBRELATIONCOUNT("c:\ability\samples\wineshop.adb")
will return 4. 

Other remote functions



DBRELATIONNAME(database, index)

The DBRELATIONNAME function returns the name of a specified relation in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

index is the relation number, starting at 1. 

For example, you know a database called wineshop, located in a folder c:\ability\samples, contains at 
least one relation:

DBRELATIONNAME("c:\ability\samples\wineshop.adb", 1) 
returns the name of the first relation in the database.

Suppose you enter "c:\ability\samples\wineshop.adb" into a cell in a spreadsheet, say A1. Then the 
following:

DBRELATIONNAME(A1, DBRELATIONCOUNT(A1))
returns the name of the last relation.

See also:

DBRELATIONCOUNT(database) 

Other remote functions



DBSORT(database, table, sort, field_name, rec_num)

The DBSORT function returns the contents of a field from a database table after a sort order has been 
applied according to the specified, named sort order. 

It requires that the sort order has already been defined in Database and can be contrasted with 
DBSQLSORT which is similar in functionality but allows you to define simple sort orders "on-the-fly".

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

sort is the named sort order that has been applied to the table or relation.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. A sort order called ByPrice has been defined acting in ascending order on the Price 
field. The unsorted table looks like:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Meursault-Charmes 54.00 white
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBSORT can be used to obtain the following results:

DBSORT("c:\ability\samples\wineshop.adb", "products", "byprice") 
returns "Château Haut du Puy" as this is the first column and row of the table when sorted by price.

DBSORT("c:\ability\samples\wineshop.adb", "products", "byprice",    1, 3)
returns " Chambolle-Musigny", as this is the 3rd cheapest wine.

DBSORT("c:\ability\samples\wineshop.adb", "products", "byprice", "price", 2)
returns the price of the second cheapest wine, 27. 

Other remote functions



DBSQL(database, SQL_statement, field_name, rec_num)

The DBSQL function returns the value of a SQL query. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

SQL_statement is a text string containing the full syntax of a SQL statement.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive with the exception that SQL commands within 
SQL_statement should all be upper case.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. Products contains three fields as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Meursault-Charmes 54.00 white
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBSQL can be used to obtain the following results:

DBSQL("c:\ability\samples\wineshop.adb", "SELECT * FROM products")
returns the entire table. "Château Haut du Puy", is displayed as it is contents of the first column from 
the first record. 

DBSQL("c:\ability\samples\wineshop.adb", "SELECT * FROM products", 3, 3)
returns "white", the third column from the third record.

ROWS(DBSQL("c:\ability\samples\wineshop.adb", "SELECT Price FROM products WHERE 
Price > 50"))

returns 2, since there are two wines over 50.

The examples given here only touch on the possibilities with SQL. For a general introduction to SQL 
with the full range of supported SQL commands in Ability, see the SQL Reference Guide.

Other remote functions



DBSQLFILTER(database, table, filter, field_name, rec_num)

The DBSQLFILTER function returns the value of a database SQL query that applies a filter. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

filter is a text string containing an SQL filter statement and take the general form of fieldname 
<operator> comparison. The following could all be used in the examples below:

filter meaning
Price = 50 Price exactly equal to 50

Price >= 50 Price greater than or equal to 50

Price > 25 AND Price < 50 Price less than 50 but greater than 
25

Classification = 'red' Classification exactly equal to 'red'

Title LIKE    'Château*' Title begins with ' Château' where * 
is a wildcard

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive with the exception of SQL operators within the filter 
statement, which must be upper case.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. Products contains three fields as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Meursault-Charmes 54.00 white
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBSQLFILTER can be used to obtain the following results:

DBSQLFILTER("c:\ability\samples\wineshop.adb", "products", "Classification = 'white' ")
returns "Meursault-Charmes", as this is the contents of the first column from the first (and only in this 
case) record that matches the filter condition. Note that the filter parameter is surrounded by double 
quotes and the text that Classification is compared to - 'white' - is in single quotes. This is necessary to 
distinguish the end of each text string respectively.

DBSQLFILTER("c:\ability\samples\wineshop.adb", "products", "Classification = 'red' ", 2, 3)
returns 53.00, the second column from the third record that matches the filter.

ROWS(DBSQLFILTER("c:\ability\samples\wineshop.adb", "products", "Price > 50", 
"Price"))

returns 2, since there are two wines over 50.

Note that:

DBSQLFILTER(database, table, filter, column, record) 



is equivalent DBSQL as follows:

DBSQL(database, "SELECT * FROM <table> WHERE <filter>", column, record).
For more detail on how to build valid filter conditions, see the SQL primer. 

Other remote functions



DBSQLSORT(database, table, sort, field_name, rec_num)

The DBSQLSORT function returns the value of a database SQL query that applies a sort order. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

sort is a text string containing an SQL sort statement. This is a field name or names with an optional 
"DESC" to reverse the default ascending order.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive. 

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. Products contains three fields as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Meursault-Charmes 54.00 white
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBSQLSORT can be used to obtain the following results:

DBSQLSORT("c:\ability\samples\wineshop.adb", "price DESC")
returns "Meursault-Charmes", the first column of the first record of the table when sorted by Price in 
descending order.

DBSQLSORT("c:\ability\samples\wineshop.adb", "price", 2, 3)
returns 27.00, the second cheapest wine price.

Note that:

DBSQLSORT(database, table, sort, column, record) 
is equivalent to using DBSQL as follows:

DBSQL(database, "SELECT * FROM <table> ORDER BY <sort>", column, record)
Other remote functions



DBSQLFILTERSORT(database, table, filter, sort, field_name, rec_num)

The DBSQLFILTERSORT function returns the value of a database SQL query that applies a filter and a
sort order. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

table is the name of the table within the database. table could also be the name of a relation.

filter is a text string containing an SQL filter statement and take the general form of fieldname 
<operator> comparison. The following could all be used in the examples below:

filter meaning
Price = 50 Price exactly equal to 50

Price >= 50 Price greater than or equal to 50

Price > 25 AND Price < 50 Price less than 50 but greater than 
25

Classification = 'red' Classification exactly equal to 'red'

Title LIKE    'Château*' Title begins with 'Château' where * 
is a wildcard

sort is a text string containing an SQL sort statement. This is a field name or names with an optional 
"DESC" to reverse the default ascending order.

field_name is optional and can be either the name of the field within a table or relation or the column 
number. If omitted, every row and column of the filtered table is returned.

rec_num is optional (and cannot be specified if field_name is omitted) and determines the record or 
row number of the returned value. If omitted, the entire column is returned (or table if field_name is 
also omitted).

The function arguments are case insensitive with the exception of SQL operators within the filter 
statement, which must be upper case.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a Product 
table of wines. Products contains three fields as follows:

Title Price Classification
Château Haut du Puy 17.00 red
Volnay-Santenots 27.00 red
Meursault-Charmes 54.00 white
Le Chambertin 53.00 red
Chambolle-Musigny 28.50 red

DBSQLFILTER can be used to obtain the following results:

DBSQLFILTERSORT("c:\ability\samples\wineshop.adb", "products", "classification = 'red' 
","price DESC")

Returns "Le Chambertin", the most expensive red wine.

DBSQLFILTER("c:\ability\samples\wineshop.adb", "products", "classification = 'red' ", 
"price", 2, 3)

returns 28.50, the second column from the third cheapest, red wine.

Note that:

DBSQLFILTERSORT(database, table, filter, sort, column, record) 
is equivalent using DBSQL as follows:



DBSQL(database, "SELECT * FROM <table> WHERE <filter> ORDER BY <sort>", column, 
record).

Other remote functions



DBTABLECOUNT(database)

The DBTABLECOUNT function returns the number of tables in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

For example, a database called wineshop, located in a folder c:\ability\samples, contains a seven 
tables:

DBTABLECOUNT("c:\ability\samples\wineshop.adb")
will return 7. 

Other remote functions



DBTABLENAME(database, index)

The DBTABLENAME function returns the name of a specified table in a database. 

database is the name of a database and must include the full path if not in the same directory as the 
open document.

index is the table number, starting at 1. 

For example, you know a database called wineshop, located in a folder c:\ability\samples, contains at 
least one table:

DBTABLENAME("c:\ability\samples\wineshop.adb", 1) 
returns the name of the first table in the database.

Suppose you enter "c:\ability\samples\wineshop.adb" into a cell in a spreadsheet, say A1. Then the 
following:

DBTABLENAME(A1, DBTABLECOUNT(A1))
returns the name of the last table.

See also:

DBTABLECOUNT(database) 

Other remote functions



REMOTE(document_name, reference_name)

The REMOTE function returns the value of a remote object. Usually this means the value of cell in a 
spreadsheet or field in a document. REMOTE is the "grandfather" of all linking functions - every other 
remote function can be expressed using REMOTE itself.

document_name is the name of a remote document and must include the full path if not in the same 
directory as the open document. The document can be a spreadsheet, database or word processing 
document.

reference_name is the name of the object whose value is sought. An object can be a named field in a 
write or spreadsheet document, a cell or range reference in a spreadsheet, or a table, query, relation or
SQL statement in a database. 

Note that there are easier to use functions to achieve the same result as follows:

WPGET Linking to Write 

SSGET Linking to Spreadsheet 

DBGET Linking to Database 

Here are some simple examples, using REMOTE to link to spreadsheets and write documents. 

REMOTE("c:\ability\samples\letter.aww", "myfield")
returns the value of the field myfield from the Write document letter.aww.

REMOTE("c:\ability\samples\income.aws", "A1") 
returns the value of the cell A1 from the spreadsheet income.aws.

REMOTE("spread1", "C1..E17")) 
returns the range C1..E17 from an untitled spreadsheet, Spread1. Note that since Spread1 has not yet 
been saved it does not have an extension.

Using REMOTE for database link is usually unnecessary since there are a full range of specific 
database linking functions.

The full syntax for REMOTE, including database links is as follows:

Application reference_name
Write reference_name is a field, usually inserted into a write 

document in order to perform calculations, or to 
establish a link to a spreadsheet cell or database field. 

For example, to get the value of a field called "daysales" 
in a write document called "report.aww", in the current 
directory, use the formula:

REMOTE("report.aww", "daysales")
Spreadsheet reference_name is either:

cell reference ("A1")

range reference ("A1..C3")

range name ("myrange") 

Spreadsheet documents are made up of cells. Groups of
these are called ranges and can be named. It is possible
to refer to a cell, a range of cells or a named range. 

Spreadsheet also allows fields, which enable links to be 
established with other Ability applications, for example, 
when using mail merge, or with other fields in the same 



spreadsheet. All these are spreadsheet objects that can 
be referred to by REMOTE. 

For example, to get the value of the cell reference B21 in
a spreadsheet called "manager", in the current directory, 
use the formula:

REMOTE("manager.aws", "B21")
Database reference_name is either:

table
query
relation
SQL statement
In addition, a filter and/or sort order can be applied to the
object and it is possible to extract a specific field or 
record. 

The syntax for tables is:

"table !sort_order !filter !field_name !
record_number" 
The syntax for queries is: 

"query !!!field_name !record_number"
The syntax for relations is: 

"relation !sort_order !filter !field_name !
record_number" 
The syntax for SQL statements is:

"SQL_statement !!!field_name !record_number" 
Note that reference_name must consist of exactly one 
database object, namely a table, query, relation or SQL 
statement. This is optionally followed by a combination 
of database query components (sort order, filter) and 
specific locations (field name, record number). Each 
query component and location following the database 
object must be prefixed by an exclamation mark - !. 

Tables and relations can have a sort_order and filter 
applied to them, and refer to a field_name and 
record_number; queries and SQL statements can refer 
to a field_name and record_number, but are always 
empty for sort_order and filter.

The arguments of reference_name are always entered 
in the same order, namely sort_order, filter, field_name 
and record_number. If any of these are empty, the ! must
still be entered in the reference, but only up to the last 
argument used in the reference. 

For instance, if the reference is to a field_name in a 
table, but no sort_order, filter or record_number is 
specified, then reference_name contains table and 
field_name, which is prefixed by !, and !! to stand for the 
two empty query components between these. No ! is 



needed, however, for the missing record_number, since 
this comes after field_name. The full reference_name is 
"table!!!field_name".

If no query components or locations are specified, 
REMOTE will return the database object, for example, a 
table, but display only the first field of the first record.

Likewise, if a reference is made to a field_name or 
record_number, then the field (column) or record (row) is
returned, but only the first cell in the field or record is 
displayed. Of course, if a reference is made to a 
field_name and a record_number, there is only one cell 
that can be returned and displayed.

You can use REMOTE in conjunction with other 
functions to perform operations on rows and columns of 
database objects. For example, the formula 
=SUM(REMOTE("Company.adb", "Salary!!!GrossPay") 
might sum the gross pay of all the employees in a 
company.

Examples:

REMOTE("c:\ability\samples\mydata.adb", "Employee")
returns the table Employee from the database mydata.adb.

REMOTE("c:\ability\samples\mydata.adb", "Customer!ByCity")
returns the table Customer from the database mydata.adb with saved sort order ByCity applied.

REMOTE("c:\ability\samples\mydata.adb", "Customer!ByCity!UpperHalf")
returns the table Customer from the database mydata.adb with saved filter UpperHalf and sort order 
ByCity applied.

REMOTE("c:\ability\samples\mydata.adb", "Customer!ByCity!UpperHalf!Company")
returns the field Company from table Customer from the database mydata.adb with saved filter 
UpperHalf and sort order ByCity applied.

REMOTE("c:\ability\samples\mydata.adb", "Customer!ByCity!UpperHalf!Company!12")
returns the 12th record from field Company from table Customer from the database mydata.adb, with 
saved filter UpperHalf and sort order ByCity applied.

REMOTE("c:\ability\samples\mydata.adb", "Employee!!!LAST_NAME!3")
returns the third last name from table Employee from the database mydata.adb.

REMOTE("c:\ability\samples\mydata.adb", "QCalc!!!!2")
returns the second record from the query QCalc from the database mydata.adb.

REMOTE("c:\ability\samples\mydata.adb", "JoinOnCustID!!HANOP")
returns the relation JoinOnCustID from the database mydata.adb with applied filter HANOP.

REMOTE("c:\ability\samples\mydata.adb", "SELECT Quantity FROM Orders WHERE CustID
= BERGS")

returns the range of quantities from Orders table from the database mydata.adb where CustID = 
BERGS.

Other remote functions





SSGET(spreadsheet, reference)

The SSGET function returns the contents of a cell (or cells) from a spreadsheet. SSGET can be used 
from within Write documents, Spreadsheet files and Database forms.

spreadsheet is the name of a spreadsheet and must include the full path if not in the same directory as
the open document. The spreadsheet extension (.aws) is not required.

reference can be a cell, range or named cell or range.

Both parameters need to be surrounded by quotes if supplied as direct references into the function.

For example:

=SSGET("sales", "A1")
returns the contents of cell A1 in a spreadsheet called sales, which must reside in the current directory.

=SSGET(B1, B2)
would return the same if cells B1 and B2 simply contain the text sales and A1 respectively.

=SUM(SSGET("sales", "C1..C10"))
returns the sum of cells C1 through C10. If C1 through C10 were named as a range called totalsales, 
then the following function would be identical to the above:

=SUM(SSGET("sales", "totalsales"))
To return a cell from a spreadsheet in a specific directory, use the full path as follows:

=SSGET("C:\My Documents\sales", "A1")
See also:

Linking to Database 

Linking to Write 

Other remote functions 



WPGET(document, fieldname)

The WPGET function returns the contents of a field from a Write document. WPGET can be used from 
within Write documents, Spreadsheet files and Database forms.

document is the name of a document and must include the full path if not in the same directory as the 
open document. The document extension (.aww) is not required.

fieldname is the name of the required field.

Both parameters need to be surrounded by quotes if supplied as direct references into the function.

For example:

=WPGET("myreport", "myfield")
returns the contents of the field named myfield in the Write document called myreport, which must 
reside in the current directory.

=WPGET(targetdoc, targetfld)
would return the same if the local fields targetdoc and targetfld simply contain the text myreport and 
myfield respectively.

To return a field from a document in a specific directory, use the full path as follows:

=WPGET("C:\My Documents\myreport", "myfield")
Linking to Database 

Linking to Spreadsheet 

Other remote functions 




